JVector项目中如何获取向量召回后的唯一标识符
在JVector项目中,当进行向量相似性搜索时,系统会返回一个包含节点分数的搜索结果(SearchResult.NodeScore)。这个结果中目前只包含一个表示RandomAccessVectorValues索引的节点值(node),这引发了一个常见需求:如何获取与召回向量相关联的唯一标识符,类似于Elasticsearch中返回的文档ID。
核心问题分析
JVector的设计理念是将向量索引与业务标识符解耦,这使得系统更加专注于高效的向量搜索性能。节点ID(nodeId)实际上是RandomAccessVectorValues提供的向量值的序号(ordinal)。这种设计带来了灵活性,但也意味着开发者需要自行管理节点ID与业务ID之间的映射关系。
解决方案实现
在实际应用中,可以通过以下方式实现节点ID到业务ID的映射:
-
外部映射存储:建立一个外部系统(如数据库、文件系统或内存哈希表)来存储nodeId与docId之间的映射关系。这种方法简单直接,但需要注意数据一致性问题。
-
索引时同步构建映射:在构建向量索引的同时,同步构建并维护这个映射关系。下面是一个典型的实现示例:
// 准备源数据,包含向量和对应的业务ID
List<TestVectorItem> sourceData = Arrays.asList(
new TestVectorItem(new float[]{-1, -1}, 11L),
new TestVectorItem(new float[]{1.5f, 1.4f}, 13L),
new TestVectorItem(new float[]{0.9f, 0.9f}, 14L),
new TestVectorItem(new float[]{1, 1}, 12L)
);
// 建立节点ID到业务ID的映射
Map<Integer, Long> nodeMap = new HashMap<>();
List<VectorFloat<?>> rawVectors = new ArrayList<>();
// 遍历源数据,构建向量列表和映射关系
for (int i = 0; i < sourceData.size(); i++) {
rawVectors.add(vectorTypeSupport.createFloatVector(sourceData.get(i).getVectors()));
nodeMap.put(i, sourceData.get(i).getDocId());
}
// 构建向量索引
var vectors = new ListRandomAccessVectorValues(rawVectors, 2);
var builder = new GraphIndexBuilder(vectors, VectorSimilarityFunction.EUCLIDEAN, 2, 2, 1.0f, 1.0f);
// 执行搜索并获取结果
try (var graph = builder.build()) {
var qv = vectorTypeSupport.createFloatVector(new float[]{0.5f, 0.5f});
var results = GraphSearcher.search(qv, 4, vectors, VectorSimilarityFunction.EUCLIDEAN, graph, Bits.ALL);
// 处理搜索结果,通过nodeMap获取业务ID
for (SearchResult.NodeScore nodeScore : results.getNodes()) {
int node = nodeScore.node;
float[] vector = (float[]) rawVectors.get(node).get();
float score = nodeScore.score;
long docId = nodeMap.get(node);
// 输出结果信息
System.out.println("向量值=" + Arrays.toString(vector) +
", 节点=" + node +
", 相似度分数=" + score +
", 业务ID=" + docId);
}
}
注意事项
-
删除操作的影响:当从索引中删除向量时,节点序号可能会发生变化,需要同步更新映射关系。
-
性能考量:对于大规模数据集,内存映射可能不是最佳选择,可以考虑使用更高效的存储方案。
-
数据一致性:确保映射关系与向量索引保持同步,特别是在并发环境下。
-
持久化:如果需要持久化存储,可以考虑将映射关系与索引文件一起保存。
最佳实践建议
-
封装一个专门的映射管理类,统一处理节点ID与业务ID的转换。
-
考虑使用更高效的映射结构,如原始类型映射(Int2LongMap等)来减少内存开销。
-
对于生产环境,建议将映射关系持久化存储,并实现相应的恢复机制。
通过这种方式,开发者可以在享受JVector高效向量搜索能力的同时,灵活地关联业务标识符,满足各种应用场景的需求。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00