深入解析HuggingFace Tokenizers中扩展词汇表时的空格丢失问题
2025-05-24 12:32:08作者:裴麒琰
背景介绍
在使用HuggingFace Tokenizers库时,开发者经常会遇到需要扩展预训练模型词汇表的情况。本文将以Mistral-7B模型为例,深入分析在扩展词汇表时出现的空格丢失问题及其解决方案。
问题现象
当开发者尝试将外部词汇表(如SentencePiece训练的词汇表)添加到Mistral分词器中时,解码后的文本会出现空格丢失现象。具体表现为:
- 原始文本:"నేను బాగున్నాను. మీరు ఏలా ఉన్నారు?"
- 解码后文本:"నేనుబాగున్నాను.మీరుఏలాఉన్నారు?"
有趣的是,当手动添加少量自定义token时,这种问题不会出现。
根本原因分析
经过深入研究,我们发现这个问题主要与token的规范化(normalization)处理有关:
- 当从外部词汇表添加token时,这些token可能已经被规范化处理,导致分词器无法正确识别空格边界
- 手动添加的token由于没有经过规范化处理,保留了原始的空格信息
- Mistral分词器内部对空格有特殊处理逻辑,规范化后的token可能干扰了这一逻辑
解决方案
针对这一问题,我们推荐以下解决方案:
方案一:禁用token规范化
在添加新token时,明确指定不进行规范化处理:
from transformers import AddedToken, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("mistralai/mistral-7b-v0.1", legacy=False)
tokenizer.add_tokens([AddedToken("<new_token>", normalized=False)])
方案二:使用最新版Transformers
确保使用最新版本的Transformers库,其中包含了针对此类问题的修复:
pip install git+https://github.com/huggingface/transformers.git
方案三:训练新的分词器
对于大规模词汇表扩展,建议直接训练新的分词器:
from transformers import AutoTokenizer
from datasets import load_dataset
tokenizer = AutoTokenizer.from_pretrained("mistralai/mistral-7b-v0.1")
dataset = load_dataset("your_dataset")
new_tokenizer = tokenizer.train_new_from_iterator(dataset, vocab_size=8000)
技术细节
- 规范化处理:分词器会对输入的token进行规范化,如统一空格处理、大小写转换等
- legacy模式:旧版分词器可能存在不同的空格处理逻辑,建议禁用
- AddedToken类:提供了更精细的token添加控制,可以指定是否规范化、是否作为单个token等
最佳实践
- 对于少量token添加,使用
AddedToken并禁用规范化 - 对于大规模词汇表更新,考虑训练新的分词器
- 始终测试解码结果,确保空格处理符合预期
- 考虑目标语言特性,某些语言(如中文)本身就不使用空格分词
结论
处理分词器词汇表扩展时,空格丢失问题通常源于token的规范化处理。通过理解分词器内部机制并采用适当的解决方案,开发者可以有效地解决这一问题,确保文本处理的准确性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
407
3.14 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
673
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
658
React Native鸿蒙化仓库
JavaScript
262
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868