深入解析HuggingFace Tokenizers中扩展词汇表时的空格丢失问题
2025-05-24 23:01:49作者:裴麒琰
背景介绍
在使用HuggingFace Tokenizers库时,开发者经常会遇到需要扩展预训练模型词汇表的情况。本文将以Mistral-7B模型为例,深入分析在扩展词汇表时出现的空格丢失问题及其解决方案。
问题现象
当开发者尝试将外部词汇表(如SentencePiece训练的词汇表)添加到Mistral分词器中时,解码后的文本会出现空格丢失现象。具体表现为:
- 原始文本:"నేను బాగున్నాను. మీరు ఏలా ఉన్నారు?"
- 解码后文本:"నేనుబాగున్నాను.మీరుఏలాఉన్నారు?"
有趣的是,当手动添加少量自定义token时,这种问题不会出现。
根本原因分析
经过深入研究,我们发现这个问题主要与token的规范化(normalization)处理有关:
- 当从外部词汇表添加token时,这些token可能已经被规范化处理,导致分词器无法正确识别空格边界
- 手动添加的token由于没有经过规范化处理,保留了原始的空格信息
- Mistral分词器内部对空格有特殊处理逻辑,规范化后的token可能干扰了这一逻辑
解决方案
针对这一问题,我们推荐以下解决方案:
方案一:禁用token规范化
在添加新token时,明确指定不进行规范化处理:
from transformers import AddedToken, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("mistralai/mistral-7b-v0.1", legacy=False)
tokenizer.add_tokens([AddedToken("<new_token>", normalized=False)])
方案二:使用最新版Transformers
确保使用最新版本的Transformers库,其中包含了针对此类问题的修复:
pip install git+https://github.com/huggingface/transformers.git
方案三:训练新的分词器
对于大规模词汇表扩展,建议直接训练新的分词器:
from transformers import AutoTokenizer
from datasets import load_dataset
tokenizer = AutoTokenizer.from_pretrained("mistralai/mistral-7b-v0.1")
dataset = load_dataset("your_dataset")
new_tokenizer = tokenizer.train_new_from_iterator(dataset, vocab_size=8000)
技术细节
- 规范化处理:分词器会对输入的token进行规范化,如统一空格处理、大小写转换等
- legacy模式:旧版分词器可能存在不同的空格处理逻辑,建议禁用
- AddedToken类:提供了更精细的token添加控制,可以指定是否规范化、是否作为单个token等
最佳实践
- 对于少量token添加,使用
AddedToken并禁用规范化 - 对于大规模词汇表更新,考虑训练新的分词器
- 始终测试解码结果,确保空格处理符合预期
- 考虑目标语言特性,某些语言(如中文)本身就不使用空格分词
结论
处理分词器词汇表扩展时,空格丢失问题通常源于token的规范化处理。通过理解分词器内部机制并采用适当的解决方案,开发者可以有效地解决这一问题,确保文本处理的准确性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869