Grafana Tempo 标签搜索功能优化:引入结果数量限制参数
背景
在分布式追踪系统Grafana Tempo中,标签(tag)和标签值(tag value)搜索是核心功能之一。随着系统规模的扩大,用户可能会遇到查询返回过多结果导致性能问题的情况。虽然Tempo已经提供了一些服务端配置选项来限制查询影响,但缺乏客户端可控的结果数量限制机制。
现有机制分析
当前Tempo通过两个服务端配置参数来控制标签查询的影响范围:
max_bytes_per_tag_values_query:限制每个标签值查询的最大字节数max_blocks_per_tag_values_query:限制每个标签值查询涉及的最大块数
这些配置虽然能防止系统过载,但缺乏灵活性,无法满足不同用户对结果数量的个性化需求。
功能改进方案
本次改进计划为Tempo的标签搜索API添加limit查询参数,允许调用方明确指定期望返回的最大结果数量。具体实现涉及两个API端点:
/api/v2/search/tags?limit=<int>:限制返回的标签数量/api/v2/search/tag/<tag>/values?limit=<int>:限制返回的特定标签值数量
技术实现考量
在实现过程中,开发团队深入讨论了几个关键技术点:
-
标签作用域处理:Tempo的标签按作用域(scope)分组返回,包括资源(resource)、事件(event)、链接(links)等。简单的全局数量限制可能导致某些作用域的结果被完全排除。
-
实现方案选择:
- 方案A:全局限制,简单但可能导致作用域结果不均衡
- 方案B:按作用域分别限制,更合理但实现复杂度略高
- 方案C:忽略固有(intrinsic)标签的限制,专注于用户自定义标签
-
结果截断通知:当结果因限制被截断时,系统应通过某种机制通知调用方,避免误认为获得了完整结果。
最终设计决策
经过讨论,团队决定采用以下设计原则:
-
对于标签搜索端点(
/api/v2/search/tags),采用按作用域分别限制的方式。即指定的limit值适用于每个作用域内的标签数量限制。 -
对于标签值搜索端点(
/api/v2/search/tag/<tag>/values),由于不涉及作用域分组,直接应用全局数量限制。 -
固有(intrinsic)标签由于其数量有限且稳定,不纳入限制范围。
实现影响范围
该功能的实现将涉及Tempo架构的多个层次:
- 查询前端(Query Frontend):负责解析limit参数并传递给下游组件
- 协议层(Proto):可能需要扩展协议定义以支持limit参数
- 查询器(Querier):处理limit参数并应用于查询逻辑
- 接收器(Ingester):在实时数据查询中应用相同的限制逻辑
预期效益
这一改进将为Tempo用户带来以下好处:
- 更好的查询控制:用户可以根据自身需求精确控制返回结果数量
- 性能优化:减少不必要的数据传输和处理开销
- 系统稳定性:防止超大结果集导致的系统资源耗尽
- 用户体验提升:前端应用可以更高效地处理有限结果集
总结
通过为Grafana Tempo的标签搜索功能添加结果数量限制参数,系统在保持现有功能的同时,为用户提供了更精细的查询控制能力。这一改进既考虑了实现的技术可行性,又充分照顾了实际使用场景的需求,是Tempo查询功能优化的重要一步。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00