基于SAM2项目的自定义图像数据集微调指南
2025-05-15 22:39:09作者:郦嵘贵Just
前言
Facebook Research开源的SAM2项目为图像分割任务提供了强大的基础模型。本文将详细介绍如何利用SAM2框架对自定义图像数据集进行微调,帮助研究人员和开发者快速上手。
数据集准备
数据集格式要求
SAM2支持对SA-1B格式的数据集进行直接训练。自定义数据集需要组织为以下结构:
数据集根目录/
├── train/
│ ├── images/
│ │ ├── 1.jpg
│ │ ├── 2.jpg
│ │ └── ...
│ └── labels/
│ ├── 1.json
│ ├── 2.json
│ └── ...
├── val/
└── test/
每个JSON标注文件应包含以下内容:
{
"image": {
"image_id": 1,
"width": 1400,
"height": 1400,
"file_name": "1.jpg"
},
"annotations": [
{
"area": 45499,
"segmentation": {
"size": [1400, 1400],
"counts": "RLE编码的二进制字符串"
}
}
]
}
数据格式转换
对于使用LabelMe等工具标注的数据集,需要转换为SA-1B格式。转换过程主要包括:
- 读取原始标注的多边形坐标
- 创建二值掩码图像
- 使用RLE(Run-Length Encoding)对掩码进行编码
- 生成符合SA-1B格式的JSON文件
配置文件修改
基础配置
在SAM2的配置文件中,需要针对自定义数据集进行以下调整:
data:
train:
_target_: training.dataset.sam2_datasets.TorchTrainMixedDataset
phases_per_epoch: ${phases_per_epoch}
batch_sizes:
- ${bs1}
datasets:
- _target_: training.dataset.vos_dataset.VOSDataset
training: true
video_dataset:
_target_: training.dataset.vos_raw_dataset.SA1BRawDataset
img_folder: ${path_to_img_folder}
gt_folder: ${path_to_gt_folder}
sampler:
_target_: training.dataset.vos_sampler.RandomUniformSampler
num_frames: 1
max_num_objects: ${max_num_objects_per_image}
transforms: ${vos.train_transforms}
关键参数说明
num_frames: 设置为1表示使用单张图像max_num_objects: 控制每张图像处理的最大目标数,建议值为3transforms: 使用默认的图像增强策略即可
模型选择与训练
SAM2提供了不同规模的模型:
- Tiny模型:计算量小,适合边缘设备
- Base模型:平衡性能与计算量
- Large模型:最高精度,计算需求大
训练命令示例
python training/train.py \
-c configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml \
--use-cluster 0 \
--num-gpus 1
训练资源评估
根据实际经验,不同硬件配置下的训练表现:
- NVIDIA RTX 4090 (24GB): 可处理4帧/批次
- NVIDIA A6000 (48GB): 同样配置下内存使用情况相似
- 训练时间:取决于数据集规模和模型大小
常见问题解决
- 内存不足:减少批次大小或降低
max_num_objects值 - 格式不匹配:确保标注文件严格遵循SA-1B格式
- 性能不佳:尝试调整学习率或增加训练轮次
结语
通过本文介绍的方法,开发者可以有效地利用SAM2框架对自定义图像数据集进行微调。实际应用中,建议从小规模数据集开始试验,逐步扩大训练规模,以获得最佳的性能与效率平衡。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355