CUTLASS中TiledMMA分片机制的技术解析
概述
本文深入分析NVIDIA CUTLASS库中TiledMMA分片机制的工作原理,特别是针对SM80_16x8x16_F32F16F16F32_TN这种矩阵乘法原子操作的分片过程。我们将通过具体示例展示如何理解partition_fragment_A和partition_fragment_B返回的张量形状。
TiledMMA基础结构
在CUTLASS中,TiledMMA是将矩阵乘法原子操作(MMA_Atom)扩展到更大规模计算的关键抽象。它通过线程布局(ThreadLayoutMNK)和值布局(ValLayoutMNK)来定义如何将计算任务分配给多个线程。
以SM80_16x8x16_F32F16F16F32_TN为例,这是一个使用Tensor Core的混合精度矩阵乘法操作:
- 输入矩阵A: FP16类型,行主序
- 输入矩阵B: FP16类型,列主序
- 输出矩阵C: FP32类型
- 计算形状: 16x8x16 (MxNxK)
线程布局与分片机制
当使用Layout<Shape<Int<4>, _1, _1>>作为线程布局时,表示:
- 在M维度使用4个线程
- 在N和K维度各使用1个线程
这样总共使用4x1x1=4个线程来处理一个TiledMMA操作。对于16x8x16的MMA_Atom,这将扩展为64x8x16的计算块(16x4=64, 8x1=8, 16x1=16)。
分片张量形状分析
对于形状为128x32的输入矩阵A和B,分片过程如下:
矩阵A的分片(partition_fragment_A)
原始矩阵A: 128(M) x 32(K) TiledMMA分片形状: 64(M) x 16(K)
分片计算:
- M维度: 128/64 = 2个分片
- K维度: 32/16 = 2个分片
每个线程负责的数据:
- 根据MMA_Atom定义,每个线程处理2x2x2=8个FP16值
- 最终分片张量形状: ((2,2,2),2,2)
矩阵B的分片(partition_fragment_B)
原始矩阵B: 128(N) x 32(K) TiledMMA分片形状: 8(N) x 16(K)
分片计算:
- N维度: 128/8 = 16个分片
- K维度: 32/16 = 2个分片
每个线程负责的数据:
- 根据MMA_Atom定义,每个线程处理2x2=4个FP16值
- 最终分片张量形状: ((2,2),16,2)
高级分片配置
在某些情况下,我们可能需要更精细地控制分片行为。例如,要实现B矩阵的16x16分片(而不是默认的8x16),可以通过以下方式:
TiledMma<MMA_Atom,
Layout<Shape<_4,_1,_1>>,
Tile<_64,_16,_16>>;
这种配置会产生64x16x16的TiledMMA,但仍然保持每个线程处理单个MMA片段的基本特性。
实际应用建议
- 理解MMA_Atom的基本形状是分析分片结果的基础
- 分片张量的形状由原始矩阵形状除以TiledMMA分片形状决定
- 每个线程负责的数据量由MMA_Atom的寄存器布局决定
- 使用print_latex()函数可以直观地查看TiledMMA的内部结构
通过深入理解这些分片机制,开发者可以更有效地利用CUTLASS进行高性能矩阵运算的编程和优化。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00