Legato:Ruby 客户端用于 Google Analytics 核心报告和管理 API
1. 安装指南
1.1 安装 Ruby 环境
在安装 Legato 之前,确保你的系统已经安装了 Ruby 环境。你可以通过以下命令检查 Ruby 是否已安装:
ruby -v
如果未安装 Ruby,请参考 Ruby 官方安装指南 进行安装。
1.2 安装 Legato Gem
Legato 是一个 Ruby Gem,可以通过 Bundler 或直接使用 gem 命令进行安装。
使用 Bundler 安装
在你的 Gemfile 中添加以下内容:
gem 'legato'
然后运行以下命令安装 Gem:
bundle install
使用 gem 命令安装
你也可以直接使用 gem 命令安装 Legato:
gem install legato
2. 项目的使用说明
2.1 获取 OAuth2 访问令牌
首先,你需要从 Google 获取一个 OAuth2 访问令牌。你可以参考 Google OAuth2 文档 获取访问令牌。
access_token = OAuth2 Access Token # 从 Google 获取
2.2 创建用户
使用获取到的访问令牌创建一个新的用户:
user = Legato::User.new(access_token)
2.3 列出账户和配置文件
你可以列出用户有权访问的所有账户和配置文件:
user.accounts
user.accounts.first.profiles
2.4 获取配置文件
你可以获取用户有权访问的配置文件:
profile = user.profiles.first
2.5 使用配置文件
配置文件可以用于查询 Google Analytics 数据。例如,你可以定义一个模型来查询退出率和页面浏览量:
class Exit
extend Legato::Model
metrics :exits, :pageviews
dimensions :page_path, :operating_system, :browser
end
profile.exit # 返回一个 Legato::Query 对象
profile.exit.each {} # 任何可枚举的操作都会触发对 GA 的请求
3. 项目 API 使用文档
3.1 指标和维度
你可以使用 metrics 和 dimensions 方法来定义查询的指标和维度:
metrics :exits, :pageviews
dimensions :page_path, :operating_system, :browser
3.2 过滤
你可以使用 filter 方法来定义查询过滤器:
filter(:high_exits) { gte(:exits, 2000) }
filter(:low_pageviews) { lte(:pageviews, 200) }
3.3 使用和链式过滤
你可以将配置文件作为参数传递给过滤器,并链式调用多个过滤器:
Exit.for_browser("Safari", profile)
Exit.high_exits.low_pageviews(profile)
3.4 实时报告
你可以使用 realtime 方法进行实时报告查询:
Exit.results(profile).realtime
4. 项目安装方式
4.1 使用 Bundler 安装
在你的 Gemfile 中添加以下内容:
gem 'legato'
然后运行以下命令安装 Gem:
bundle install
4.2 使用 gem 命令安装
你也可以直接使用 gem 命令安装 Legato:
gem install legato
4.3 验证安装
安装完成后,你可以通过以下命令验证 Legato 是否安装成功:
irb
require 'legato'
如果没有报错,说明 Legato 已成功安装。
总结
Legato 是一个强大的 Ruby 客户端,用于与 Google Analytics 核心报告和管理 API 进行交互。通过本文档,你可以了解如何安装、配置和使用 Legato 来查询和管理 Google Analytics 数据。希望本文档能帮助你更好地理解和使用 Legato。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00