TensorFlow CMake/C++ Collection 开源项目最佳实践
项目介绍
TensorFlow CMake/C++ Collection 是一个开源项目,旨在提供一个无 Bazel 的 TensorFlow 示例和 CMake 脚本,帮助开发者在不使用 Bazel 的情况下,使用 CMake 和 FindTensorFlow.cmake 在 C、C++、Go 和 Python 中使用 TensorFlow。项目提供了可靠的、简单的示例,用于加载预训练模型或编译自定义操作(包括 CUDA 支持)。
项目快速启动
环境准备
- 确保系统已安装 TensorFlow(可以使用 pip 安装
tensorflow-gpu)。 - 确保系统已安装 CMake。
步骤
- 克隆项目到本地:
git clone https://github.com/PatWie/tensorflow-cmake.git
cd tensorflow-cmake
- 进入项目中的自定义操作示例目录:
cd custom_op
- 运行 CMake 生成构建系统:
cmake .
- 编译项目:
make
- 运行测试脚本:
python test_matrix_add.py
应用案例和最佳实践
自定义操作
自定义操作示例展示了如何使用 C++/CUDA 和 CMake 创建 TensorFlow 的自定义操作。该示例提供了一个模板,用于快速开始自定义操作的实现。
TensorFlow 图像处理
TensorFlow 图像处理示例演示了如何使用 OpenCV 或 TensorFlow 加载、调整图像大小并保存图像。这可以作为图像处理任务的基础。
TensorFlow Serving
TensorFlow Serving 示例展示了如何使用 TensorFlow Serving 来处理 TensorFlow 模型。示例包括使用向量输入和编码图像输入两种情况。
模型推理
模型推理示例展示了如何在 C、C++、Go 和 Python 中加载 TensorFlow 模型并执行推理。这些示例基于 TensorFlow C-API,因此需要从源代码构建 TensorFlow。
典型生态项目
TensorFlow CMake/C++ Collection 项目是一个独立的库,但它与 TensorFlow 生态系统紧密集成。这个项目可以作为其他 TensorFlow 应用的基础,特别是那些需要 CMake 构建系统的项目。
总之,TensorFlow CMake/C++ Collection 项目为开发者提供了一个无 Bazel 的 TensorFlow 开发环境,并提供了多个示例和最佳实践,帮助开发者快速开始 TensorFlow 开发。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00