TensorFlow CMake/C++ Collection 开源项目最佳实践
项目介绍
TensorFlow CMake/C++ Collection 是一个开源项目,旨在提供一个无 Bazel 的 TensorFlow 示例和 CMake 脚本,帮助开发者在不使用 Bazel 的情况下,使用 CMake 和 FindTensorFlow.cmake 在 C、C++、Go 和 Python 中使用 TensorFlow。项目提供了可靠的、简单的示例,用于加载预训练模型或编译自定义操作(包括 CUDA 支持)。
项目快速启动
环境准备
- 确保系统已安装 TensorFlow(可以使用 pip 安装
tensorflow-gpu
)。 - 确保系统已安装 CMake。
步骤
- 克隆项目到本地:
git clone https://github.com/PatWie/tensorflow-cmake.git
cd tensorflow-cmake
- 进入项目中的自定义操作示例目录:
cd custom_op
- 运行 CMake 生成构建系统:
cmake .
- 编译项目:
make
- 运行测试脚本:
python test_matrix_add.py
应用案例和最佳实践
自定义操作
自定义操作示例展示了如何使用 C++/CUDA 和 CMake 创建 TensorFlow 的自定义操作。该示例提供了一个模板,用于快速开始自定义操作的实现。
TensorFlow 图像处理
TensorFlow 图像处理示例演示了如何使用 OpenCV 或 TensorFlow 加载、调整图像大小并保存图像。这可以作为图像处理任务的基础。
TensorFlow Serving
TensorFlow Serving 示例展示了如何使用 TensorFlow Serving 来处理 TensorFlow 模型。示例包括使用向量输入和编码图像输入两种情况。
模型推理
模型推理示例展示了如何在 C、C++、Go 和 Python 中加载 TensorFlow 模型并执行推理。这些示例基于 TensorFlow C-API,因此需要从源代码构建 TensorFlow。
典型生态项目
TensorFlow CMake/C++ Collection 项目是一个独立的库,但它与 TensorFlow 生态系统紧密集成。这个项目可以作为其他 TensorFlow 应用的基础,特别是那些需要 CMake 构建系统的项目。
总之,TensorFlow CMake/C++ Collection 项目为开发者提供了一个无 Bazel 的 TensorFlow 开发环境,并提供了多个示例和最佳实践,帮助开发者快速开始 TensorFlow 开发。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









