Joern项目中手动添加函数调用关系的方法解析
2025-07-02 11:54:14作者:殷蕙予
在静态代码分析工具Joern的实际使用过程中,有时会遇到工具无法自动识别某些特定函数调用关系的情况。本文将以一个典型场景为例,详细介绍如何在Joern中手动添加函数调用边(Call Edge),帮助开发者完善代码分析结果。
问题背景
当代码中存在通过函数映射表或动态调用等方式实现的函数调用时,Joern可能无法准确识别调用关系。例如以下Go代码片段:
func main() {
funcMap := map[string]interface{}{
"Add": Add,
}
result := funcMap["Add"].(func(int, int) int)(3, 4)
}
func Add(a, b int) int {
return a + b
}
在这种情况下,Joern无法自动建立从main函数到Add函数的调用关系,需要开发者手动干预。
解决方案
Joern提供了灵活的API允许开发者手动添加调用关系。核心步骤如下:
- 获取调用节点(Call):首先需要定位到具体的调用语句节点
- 获取方法节点(Method):然后找到被调用的目标方法节点
- 建立调用边(CALL):最后在两者之间建立调用关系
具体实现代码如下:
// 获取调用节点和方法节点
val call = cpg.call("funcMap\\[\\\"Add\\\"\\]").head
val method = cpg.method("Add").head
// 添加调用边
diffGraph.addEdge(call, method, EdgeTypes.CALL)
// 提交变更
run.commit
技术细节说明
-
节点查询:使用CPG(Code Property Graph)查询语言定位特定节点
cpg.call用于查找调用节点cpg.method用于查找方法定义节点
-
正则匹配:在查询动态调用时,需要使用转义字符匹配特殊符号
-
差异图(DiffGraph):Joern使用差异图机制来记录和提交修改,确保修改的原子性
-
边类型:
EdgeTypes.CALL表示这是一个函数调用关系
实际应用建议
-
批量处理:当存在多个需要手动添加的调用关系时,可以编写循环批量处理
-
验证机制:添加关系后,建议通过
cpg.call.callee等方法验证关系是否建立成功 -
持久化:重要修改应考虑导出修改后的CPG,避免重复工作
-
文档记录:建议记录手动添加的关系及其原因,便于后续维护
总结
Joern作为强大的静态分析工具,虽然能自动识别大多数代码结构,但在处理动态特性时可能需要人工干预。通过本文介绍的方法,开发者可以灵活地补充工具无法自动识别的调用关系,从而获得更完整的代码分析结果。这种能力特别适用于处理反射、动态调用等复杂场景,是高级代码分析的重要技能。
掌握这项技术后,开发者可以更有效地利用Joern进行深度代码分析,特别是在处理包含复杂调用关系的代码库时,能够确保分析结果的完整性和准确性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660