RF-DETR模型导出ONNX格式的技术指南
2025-07-06 11:26:22作者:殷蕙予
概述
RF-DETR作为基于DETR架构改进的目标检测模型,在实际部署中经常需要转换为ONNX格式以便在不同平台上运行。本文将详细介绍如何正确导出RF-DETR模型为ONNX格式,并探讨相关技术细节。
模型导出方法
最新版本的RF-DETR已内置了便捷的导出功能,开发者只需简单几行代码即可完成导出:
from rfdetr import RFDETRBase
model = RFDETRBase()
model.export()
执行上述代码后,模型将被导出为ONNX格式,默认保存在output/inference_model.onnx路径下。
导出后处理
获得ONNX模型后,可以进一步使用TensorRT进行优化。例如转换为FP16精度的命令如下:
trtexec --onnx=output/inference_model.onnx --fp16
分辨率设置技巧
RF-DETR支持多分辨率输入,在导出前可以通过参数指定所需分辨率:
model = RFDETRBase(resolution=728) # 设置为728x728分辨率
需要注意的是,当前版本要求分辨率必须是56的整数倍,这是模型架构决定的限制条件。
技术细节说明
-
批量大小限制:ONNX导出仅支持批处理大小为1的情况,若尝试设置更大的批处理量,系统会自动将其调整为1。
-
版本兼容性:建议使用最新版本的RF-DETR包,旧版本可能缺少导出功能或存在兼容性问题。
-
模型架构适配:导出过程中会自动处理模型内部的结构适配问题,包括编码器配置等,开发者无需手动调整。
实际应用建议
对于生产环境部署,建议:
- 先导出基础ONNX模型
- 根据目标硬件平台选择合适的精度(FP32/FP16)
- 测试不同分辨率下的性能/精度平衡
- 考虑使用TensorRT等工具进行进一步优化
通过以上步骤,可以充分发挥RF-DETR模型在不同硬件平台上的性能潜力。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1