Caffeine缓存库中的递归写入死锁问题分析
2025-05-13 08:36:59作者:伍希望
问题背景
在使用Caffeine缓存库时,开发人员可能会遇到线程阻塞(Blocked)的情况。本文通过一个实际生产案例,分析了一个典型的递归写入导致的死锁问题,并提供了解决方案。
问题现象
在生产环境中,一个Java应用突然出现大量线程处于BLOCKED状态,所有阻塞线程都卡在ConcurrentHashMap.compute()方法上,等待同一个锁对象。堆栈跟踪显示这些线程都在尝试通过Caffeine缓存的computeIfAbsent方法获取或计算缓存值。
技术细节分析
1. 缓存配置分析
问题中的缓存配置如下:
public static <K, V> Cache<K, V> create(String name) {
return Caffeine.newBuilder()
.maximumSize(600)
.expireAfterAccess(Duration.ofMinutes(15))
.removalListener(new LogRemovalBySize<>(name))
.recordStats()
.build();
}
这是一个典型的Caffeine缓存配置,设置了最大容量600,15分钟访问过期策略,并添加了移除监听器记录统计信息。
2. 使用模式分析
缓存的使用方式是通过computeIfAbsent方法:
public List<LAOSUserAuthorizationDTO> loadUserAuthorization(...) {
LaosCacheKeyWithValidTime cacheKey = ...;
return userAuthCache.get(cacheKey, key -> delegate.loadUserAuthorization(...));
}
表面上看这是一个标准的缓存使用模式,但问题出在更深层次的调用链中。
根本原因
通过完整的线程堆栈分析发现,问题实际上是由递归写入导致的:
- 外层调用通过computeIfAbsent尝试获取缓存值
- 当缓存未命中时,执行加载函数(delegate.loadUserAuthorization)
- 加载函数内部又触发了Failsafe的重试机制
- 重试过程中再次调用了相同的缓存方法
- 形成了递归调用链,导致死锁
这种递归调用违反了ConcurrentHashMap和Caffeine缓存的使用约定,因为computeIfAbsent方法不支持在计算过程中对同一映射进行递归修改。
解决方案
1. 调整装饰器顺序
最简单的解决方案是调整装饰器的顺序,将缓存层放在重试层之外:
return new CachingLaosConfigProvider(
new FailsafeLaosConfigProvider(
new HttpLaosConfigProvider(...),
new FailsafeLaosConfigProvider.RetryConfig(...)
)
);
这样设计后,重试逻辑完全在缓存层内部执行,不会形成递归调用。
2. 使用AsyncCache替代方案
更优雅的解决方案是使用Caffeine的AsyncCache特性:
- 将计算函数改为返回CompletableFuture
- 使用AsyncCache.get(key, key -> asyncComputation)
- 在asyncComputation中可以自由进行重试等异步操作
- 最终在外部通过join获取结果
这种模式避免了在计算过程中阻塞等待,减少了锁持有时间,更适合需要重试等复杂逻辑的场景。
最佳实践建议
- 避免递归写入:永远不要在缓存加载函数中再次访问同一缓存
- 合理设计装饰器顺序:将可能重试或递归的逻辑放在缓存层内部
- 考虑使用异步模式:对于复杂计算逻辑,AsyncCache通常更安全高效
- 添加监控告警:对缓存命中率、加载时间等指标进行监控
总结
Caffeine缓存库虽然性能优异,但使用时仍需遵循其设计约定。递归写入是一个常见陷阱,通过调整架构设计或使用异步模式可以有效避免。理解底层实现原理和线程模型,才能充分发挥缓存库的性能优势。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K