Caffeine缓存库中的递归写入死锁问题分析
2025-05-13 04:34:53作者:伍希望
问题背景
在使用Caffeine缓存库时,开发人员可能会遇到线程阻塞(Blocked)的情况。本文通过一个实际生产案例,分析了一个典型的递归写入导致的死锁问题,并提供了解决方案。
问题现象
在生产环境中,一个Java应用突然出现大量线程处于BLOCKED状态,所有阻塞线程都卡在ConcurrentHashMap.compute()方法上,等待同一个锁对象。堆栈跟踪显示这些线程都在尝试通过Caffeine缓存的computeIfAbsent方法获取或计算缓存值。
技术细节分析
1. 缓存配置分析
问题中的缓存配置如下:
public static <K, V> Cache<K, V> create(String name) {
return Caffeine.newBuilder()
.maximumSize(600)
.expireAfterAccess(Duration.ofMinutes(15))
.removalListener(new LogRemovalBySize<>(name))
.recordStats()
.build();
}
这是一个典型的Caffeine缓存配置,设置了最大容量600,15分钟访问过期策略,并添加了移除监听器记录统计信息。
2. 使用模式分析
缓存的使用方式是通过computeIfAbsent方法:
public List<LAOSUserAuthorizationDTO> loadUserAuthorization(...) {
LaosCacheKeyWithValidTime cacheKey = ...;
return userAuthCache.get(cacheKey, key -> delegate.loadUserAuthorization(...));
}
表面上看这是一个标准的缓存使用模式,但问题出在更深层次的调用链中。
根本原因
通过完整的线程堆栈分析发现,问题实际上是由递归写入导致的:
- 外层调用通过computeIfAbsent尝试获取缓存值
- 当缓存未命中时,执行加载函数(delegate.loadUserAuthorization)
- 加载函数内部又触发了Failsafe的重试机制
- 重试过程中再次调用了相同的缓存方法
- 形成了递归调用链,导致死锁
这种递归调用违反了ConcurrentHashMap和Caffeine缓存的使用约定,因为computeIfAbsent方法不支持在计算过程中对同一映射进行递归修改。
解决方案
1. 调整装饰器顺序
最简单的解决方案是调整装饰器的顺序,将缓存层放在重试层之外:
return new CachingLaosConfigProvider(
new FailsafeLaosConfigProvider(
new HttpLaosConfigProvider(...),
new FailsafeLaosConfigProvider.RetryConfig(...)
)
);
这样设计后,重试逻辑完全在缓存层内部执行,不会形成递归调用。
2. 使用AsyncCache替代方案
更优雅的解决方案是使用Caffeine的AsyncCache特性:
- 将计算函数改为返回CompletableFuture
- 使用AsyncCache.get(key, key -> asyncComputation)
- 在asyncComputation中可以自由进行重试等异步操作
- 最终在外部通过join获取结果
这种模式避免了在计算过程中阻塞等待,减少了锁持有时间,更适合需要重试等复杂逻辑的场景。
最佳实践建议
- 避免递归写入:永远不要在缓存加载函数中再次访问同一缓存
- 合理设计装饰器顺序:将可能重试或递归的逻辑放在缓存层内部
- 考虑使用异步模式:对于复杂计算逻辑,AsyncCache通常更安全高效
- 添加监控告警:对缓存命中率、加载时间等指标进行监控
总结
Caffeine缓存库虽然性能优异,但使用时仍需遵循其设计约定。递归写入是一个常见陷阱,通过调整架构设计或使用异步模式可以有效避免。理解底层实现原理和线程模型,才能充分发挥缓存库的性能优势。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896