Presidio结构化数据处理中的自定义匿名化函数扩展
2025-06-13 00:29:37作者:宣利权Counsellor
概述
在数据隐私保护领域,Microsoft的Presidio项目提供了强大的匿名化功能。其中Presidio Structured模块专门用于处理结构化数据(如pandas DataFrame)的匿名化操作。本文将深入探讨如何在该模块中扩展自定义匿名化功能,包括添加对非预定义实体的识别和匿名化处理。
核心概念
Presidio Structured通过两个核心组件工作:分析器(Analyzer)和匿名化引擎(Anonymizer)。分析器负责识别数据中的敏感信息,匿名化引擎则根据识别结果执行相应的匿名化操作。
自定义实体识别
要处理Presidio默认不支持的实体类型,我们需要创建自定义识别器(Recognizer)。以下是实现步骤:
-
创建PatternRecognizer:这是最简单的识别器类型,基于模式匹配(如正则表达式或拒绝列表)工作。
-
配置识别器参数:
supported_entity:定义新实体类型的名称deny_list:提供需要匹配的关键词列表- 其他可选参数如上下文词、置信度分数等
-
将识别器注册到分析引擎:通过AnalyzerEngine的registry属性添加自定义识别器
自定义匿名化操作
对于匿名化阶段,我们可以:
- 为不同实体类型指定不同的匿名化策略
- 使用内置操作如"replace"、"redact"等
- 通过"custom"类型实现完全自定义的匿名化逻辑
完整实现示例
import pandas as pd
from presidio_structured import StructuredEngine, PandasAnalysisBuilder
from presidio_anonymizer.entities import OperatorConfig
from presidio_analyzer import AnalyzerEngine, PatternRecognizer
# 初始化组件
analyzer = AnalyzerEngine()
pandas_engine = StructuredEngine()
# 定义自定义识别器 - 以职称为例
titles_list = ["Sir", "Ma'am", "Mr.", "Mrs.", "Ms.", "Dr.", "Professor"]
titles_recognizer = PatternRecognizer(
supported_entity="TITLE",
deny_list=titles_list
)
analyzer.registry.add_recognizer(titles_recognizer)
# 配置匿名化操作
operators = {
"DEFAULT": OperatorConfig("replace", {"new_value": "<ANONYMIZED>"}),
"TITLE": OperatorConfig("redact", {}),
"PERSON": OperatorConfig("replace", {"new_value": "[姓名已匿名]"}),
}
# 准备数据
sample_df = pd.DataFrame({
"title": ["Mr.", "Dr.", "Professor"],
"name": ["张三", "李四", "王五"]
})
# 执行匿名化流程
analysis_builder = PandasAnalysisBuilder(analyzer=analyzer)
tabular_analysis = analysis_builder.generate_analysis(sample_df)
anonymized_df = pandas_engine.anonymize(sample_df, tabular_analysis, operators=operators)
高级技巧
- 动态匿名化值:可以使用Faker库生成逼真的假数据
- 条件匿名化:在自定义函数中实现基于条件的匿名化逻辑
- 性能优化:对于大数据集,考虑批处理或并行处理
注意事项
- 确保自定义实体名称不与Presidio内置实体冲突
- 为敏感操作添加适当的异常处理
- 在生产环境中充分测试自定义逻辑
- 考虑匿名化操作对数据分析和机器学习的影响
通过灵活运用Presidio Structured的自定义功能,开发者可以构建出适应各种业务场景的数据隐私保护解决方案,在保证数据实用性的同时满足合规要求。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
135
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218