Presidio结构化数据处理中的自定义匿名化函数扩展
2025-06-13 11:00:09作者:宣利权Counsellor
概述
在数据隐私保护领域,Microsoft的Presidio项目提供了强大的匿名化功能。其中Presidio Structured模块专门用于处理结构化数据(如pandas DataFrame)的匿名化操作。本文将深入探讨如何在该模块中扩展自定义匿名化功能,包括添加对非预定义实体的识别和匿名化处理。
核心概念
Presidio Structured通过两个核心组件工作:分析器(Analyzer)和匿名化引擎(Anonymizer)。分析器负责识别数据中的敏感信息,匿名化引擎则根据识别结果执行相应的匿名化操作。
自定义实体识别
要处理Presidio默认不支持的实体类型,我们需要创建自定义识别器(Recognizer)。以下是实现步骤:
-
创建PatternRecognizer:这是最简单的识别器类型,基于模式匹配(如正则表达式或拒绝列表)工作。
-
配置识别器参数:
supported_entity
:定义新实体类型的名称deny_list
:提供需要匹配的关键词列表- 其他可选参数如上下文词、置信度分数等
-
将识别器注册到分析引擎:通过AnalyzerEngine的registry属性添加自定义识别器
自定义匿名化操作
对于匿名化阶段,我们可以:
- 为不同实体类型指定不同的匿名化策略
- 使用内置操作如"replace"、"redact"等
- 通过"custom"类型实现完全自定义的匿名化逻辑
完整实现示例
import pandas as pd
from presidio_structured import StructuredEngine, PandasAnalysisBuilder
from presidio_anonymizer.entities import OperatorConfig
from presidio_analyzer import AnalyzerEngine, PatternRecognizer
# 初始化组件
analyzer = AnalyzerEngine()
pandas_engine = StructuredEngine()
# 定义自定义识别器 - 以职称为例
titles_list = ["Sir", "Ma'am", "Mr.", "Mrs.", "Ms.", "Dr.", "Professor"]
titles_recognizer = PatternRecognizer(
supported_entity="TITLE",
deny_list=titles_list
)
analyzer.registry.add_recognizer(titles_recognizer)
# 配置匿名化操作
operators = {
"DEFAULT": OperatorConfig("replace", {"new_value": "<ANONYMIZED>"}),
"TITLE": OperatorConfig("redact", {}),
"PERSON": OperatorConfig("replace", {"new_value": "[姓名已匿名]"}),
}
# 准备数据
sample_df = pd.DataFrame({
"title": ["Mr.", "Dr.", "Professor"],
"name": ["张三", "李四", "王五"]
})
# 执行匿名化流程
analysis_builder = PandasAnalysisBuilder(analyzer=analyzer)
tabular_analysis = analysis_builder.generate_analysis(sample_df)
anonymized_df = pandas_engine.anonymize(sample_df, tabular_analysis, operators=operators)
高级技巧
- 动态匿名化值:可以使用Faker库生成逼真的假数据
- 条件匿名化:在自定义函数中实现基于条件的匿名化逻辑
- 性能优化:对于大数据集,考虑批处理或并行处理
注意事项
- 确保自定义实体名称不与Presidio内置实体冲突
- 为敏感操作添加适当的异常处理
- 在生产环境中充分测试自定义逻辑
- 考虑匿名化操作对数据分析和机器学习的影响
通过灵活运用Presidio Structured的自定义功能,开发者可以构建出适应各种业务场景的数据隐私保护解决方案,在保证数据实用性的同时满足合规要求。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58