Presidio结构化数据处理中的自定义匿名化函数扩展
2025-06-13 12:46:14作者:宣利权Counsellor
概述
在数据隐私保护领域,Microsoft的Presidio项目提供了强大的匿名化功能。其中Presidio Structured模块专门用于处理结构化数据(如pandas DataFrame)的匿名化操作。本文将深入探讨如何在该模块中扩展自定义匿名化功能,包括添加对非预定义实体的识别和匿名化处理。
核心概念
Presidio Structured通过两个核心组件工作:分析器(Analyzer)和匿名化引擎(Anonymizer)。分析器负责识别数据中的敏感信息,匿名化引擎则根据识别结果执行相应的匿名化操作。
自定义实体识别
要处理Presidio默认不支持的实体类型,我们需要创建自定义识别器(Recognizer)。以下是实现步骤:
-
创建PatternRecognizer:这是最简单的识别器类型,基于模式匹配(如正则表达式或拒绝列表)工作。
-
配置识别器参数:
supported_entity:定义新实体类型的名称deny_list:提供需要匹配的关键词列表- 其他可选参数如上下文词、置信度分数等
-
将识别器注册到分析引擎:通过AnalyzerEngine的registry属性添加自定义识别器
自定义匿名化操作
对于匿名化阶段,我们可以:
- 为不同实体类型指定不同的匿名化策略
- 使用内置操作如"replace"、"redact"等
- 通过"custom"类型实现完全自定义的匿名化逻辑
完整实现示例
import pandas as pd
from presidio_structured import StructuredEngine, PandasAnalysisBuilder
from presidio_anonymizer.entities import OperatorConfig
from presidio_analyzer import AnalyzerEngine, PatternRecognizer
# 初始化组件
analyzer = AnalyzerEngine()
pandas_engine = StructuredEngine()
# 定义自定义识别器 - 以职称为例
titles_list = ["Sir", "Ma'am", "Mr.", "Mrs.", "Ms.", "Dr.", "Professor"]
titles_recognizer = PatternRecognizer(
supported_entity="TITLE",
deny_list=titles_list
)
analyzer.registry.add_recognizer(titles_recognizer)
# 配置匿名化操作
operators = {
"DEFAULT": OperatorConfig("replace", {"new_value": "<ANONYMIZED>"}),
"TITLE": OperatorConfig("redact", {}),
"PERSON": OperatorConfig("replace", {"new_value": "[姓名已匿名]"}),
}
# 准备数据
sample_df = pd.DataFrame({
"title": ["Mr.", "Dr.", "Professor"],
"name": ["张三", "李四", "王五"]
})
# 执行匿名化流程
analysis_builder = PandasAnalysisBuilder(analyzer=analyzer)
tabular_analysis = analysis_builder.generate_analysis(sample_df)
anonymized_df = pandas_engine.anonymize(sample_df, tabular_analysis, operators=operators)
高级技巧
- 动态匿名化值:可以使用Faker库生成逼真的假数据
- 条件匿名化:在自定义函数中实现基于条件的匿名化逻辑
- 性能优化:对于大数据集,考虑批处理或并行处理
注意事项
- 确保自定义实体名称不与Presidio内置实体冲突
- 为敏感操作添加适当的异常处理
- 在生产环境中充分测试自定义逻辑
- 考虑匿名化操作对数据分析和机器学习的影响
通过灵活运用Presidio Structured的自定义功能,开发者可以构建出适应各种业务场景的数据隐私保护解决方案,在保证数据实用性的同时满足合规要求。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328