more-itertools项目中滑动窗口算法的性能优化实践
2025-06-17 11:47:57作者:钟日瑜
在Python的more-itertools项目中,sliding_window()
函数是一个用于生成重叠固定长度块的实用工具。最近社区对其性能进行了深入分析和优化,提出了一种针对小窗口尺寸的快速路径实现方案。
原始实现分析
原始实现使用了collections.deque
结合islice
的方式:
def sliding_window1(iterable, n):
iterator = iter(iterable)
window = collections.deque(islice(iterator, n - 1), maxlen=n)
for x in iterator:
window.append(x)
yield tuple(window)
这种实现方式简单直接,但对于小窗口尺寸(n≤20)来说,性能并非最优。测试数据显示,在处理10000个元素的序列时,窗口大小为4的情况下耗时约0.0721秒。
优化方案探索
开发者提出了三种替代方案,其中最优的是基于tee
和islice
的组合实现:
def sliding_window2(iterable, n):
iterators = tee(iterable, n)
for i, iterator in enumerate(iterators):
next(islice(iterator, i, i), None)
return zip(*iterators)
这种实现利用了Python的迭代器协议,通过创建多个迭代器副本并适当推进每个迭代器的位置,然后使用zip
组合结果。测试显示,相同条件下性能提升约3倍(0.0237秒)。
性能对比分析
通过基准测试,开发者得出了以下结论:
- 对于小窗口(n≤20),
tee
+islice
方案明显更快 - 对于大窗口(n>20),原始
deque
方案更优 - 第一个输出元组的生成时间是O(n²),后续元组是O(n)
混合调度策略
基于这些发现,项目采用了混合调度策略:
def sliding_window(iterable, n):
if n > 0 and n <= 20:
return sliding_window_tee_islice_version(iterable, n)
return sliding_window_deque_version(iterable, n)
这种策略自动选择最适合当前窗口大小的算法实现,既保证了小窗口的高性能,又维持了大窗口的稳定性。
其他优化尝试
社区还探索了其他实现方式,包括:
- 使用列表代替双端队列的方案,在某些情况下性能更优
- 基于元组拼接的实现,虽然代码简洁但性能不如
tee
方案 - 组合
islice
和tee
的变体,但性能始终不如直接使用next
推进迭代器
实际应用建议
对于需要在项目中使用滑动窗口功能的开发者:
- 优先使用more-itertools提供的优化版本
- 如果窗口大小固定且较小(≤20),可以考虑直接使用
tee
方案 - 对于极大窗口或内存敏感场景,
deque
方案可能更合适
这种性能优化实践展示了Python迭代器协议和标准库工具的巧妙组合,为处理序列数据提供了高效解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.3 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
531
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
587

Ascend Extension for PyTorch
Python
73
102

仓颉编程语言测试用例。
Cangjie
34
59

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401