Higress项目中多模态模型路由问题的分析与解决方案
问题背景
在Higress项目的实际应用场景中,用户在使用all-in-one镜像部署qwen2.5-vl多模态模型时遇到了网关报错问题。具体表现为在使用model-router插件进行多模型路由时出现异常,导致请求无法正常处理。
问题现象
用户通过Docker部署Higress服务后,在尝试访问多模态模型时,网关日志中出现了明显的错误信息。这些错误主要与Wasm插件处理请求时的缓存机制有关,特别是在处理流式输出时表现尤为明显。
根本原因分析
经过技术团队深入排查,发现问题主要源于以下两个方面:
-
Wasm SDK的缓存处理缺陷:C++编写的Wasm Plugin SDK在处理特定类型请求时存在缓存管理问题,导致model-router插件无法正常工作。
-
超时配置不足:多模态模型处理请求通常需要较长时间,而默认的超时设置无法满足实际需求,导致请求被提前终止。
解决方案
针对上述问题,技术团队提供了两种解决方案:
临时解决方案
-
关闭model-router插件:对于不依赖模型匹配路由的场景,可以暂时关闭该插件,通过URL直接区分不同模型。
-
调整超时配置:通过修改Higress的全局配置,显著增加downstream的超时时间:
downstream: idleTimeout: 18000 # 将默认值增大100倍
永久解决方案
技术团队已经修复了Wasm SDK中的缓存处理问题,并更新了相关镜像。用户可以通过以下方式获取最新修复:
- 拉取最新的Higress镜像
- 重新部署服务
- 启用model-router插件进行正常的多模型路由
最佳实践建议
-
多模态模型部署:对于处理时间较长的多模态模型,建议预先调整超时参数,避免请求中断。
-
插件选择:根据实际需求合理选择是否启用model-router插件。对于简单的单模型场景,可以直接通过URL路由。
-
性能监控:在调整超时参数后,应密切监控系统性能,确保不会因为长时请求导致资源耗尽。
总结
Higress作为一款功能强大的网关服务,在处理多模态模型等复杂场景时展现了良好的扩展性。通过本次问题的解决过程,我们不仅修复了技术缺陷,也为用户提供了更灵活的使用方案。建议用户根据自身业务特点选择合适的配置方式,并保持对官方更新的关注,以获取最佳的使用体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00