AWS CDK 即将扩展使用数据收集范围以优化开发体验
AWS CDK 团队近期宣布了一项重要更新,计划在2025年2月15日发布的版本中扩展框架的使用数据收集范围。这项改进旨在帮助开发团队更精准地识别受影响的应用程序,并更好地规划CDK的发展路线。
当前数据收集情况
目前,当用户选择启用版本报告功能时,AWS CDK会收集以下基本信息:
- 使用的CDK版本号
- 应用程序中使用的L2构造(Constructs)
这些数据通过匿名方式收集,主要用于了解CDK的整体使用情况和各版本分布。
扩展后的数据收集方案
新版本将增加对L2构造更详细的使用数据收集,主要包括:
-
构造属性键名:当使用L2构造的内置属性时,系统会记录属性键名,包括嵌套在字典对象中的内置属性键。
-
布尔值和枚举类型的属性值:对于CDK定义的属性键,仅收集布尔值和枚举类型的属性值,其他类型如字符串值或构造引用将被匿名处理。
-
方法调用信息:当使用L2构造的方法时,系统会记录:
- 方法名称
- 属性键名
- 布尔值和枚举类型的属性值
数据隐私保护机制
为确保用户隐私,新方案设计了严格的数据处理规则:
- 对于用户自定义创建的属性键和值,整个对象将被匿名处理
- 复杂类型如字符串值或构造引用会被自动过滤
- 用户完全掌控是否参与数据收集
版本升级策略
这项变更将分阶段实施:
- 新创建的应用程序:默认启用扩展的数据收集功能,但用户可以通过配置选择退出
- 现有应用程序:即使升级到新版本,也不会自动启用扩展收集功能,需要用户显式配置
- 已选择退出的应用:保持现有设置不变
改进带来的好处
扩展数据收集范围将为CDK生态带来显著优势:
-
更精准的沟通:当出现安全公告、弃用通知等关键信息时,团队能更快识别受影响的应用程序并通知相关用户。
-
更科学的开发规划:通过分析构造的实际使用模式,团队可以:
- 更合理地分配开发资源
- 制定更符合实际的弃用时间表
- 基于真实数据规划替代方案
-
更优质的用户体验:收集的详细使用数据将帮助团队优先改进最常用的功能,优化开发者体验。
技术实现考量
这项改进在设计上充分考虑了以下因素:
-
选择性参与:继续保持现有的选择加入机制,尊重用户隐私偏好。
-
最小数据原则:仅收集必要的元数据,避免收集可能包含敏感信息的实际值。
-
渐进式部署:通过版本控制和功能开关确保平滑过渡,不影响现有工作流。
对于使用复杂配置(如自定义OpenAPI规范)的场景,系统会自动过滤整个对象,确保不会意外收集到用户自定义内容。
这项改进代表了AWS CDK向更数据驱动的开发模式迈出的重要一步,将帮助团队基于真实使用情况做出更明智的技术决策,最终为所有CDK用户带来更好的开发体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00