Jina Hub 项目使用教程
2025-04-16 13:38:18作者:翟萌耘Ralph
1. 项目目录结构及介绍
Jina Hub 是一个用于托管 Jina 执行器的开放注册表,通过容器镜像来实现。项目的目录结构如下:
jina-hub/
├── Dockerfile
├── manifest.yml
├── README.md
├── requirements.txt
├── __init__.py
├── tests/
│ ├── test_MyAwesomeExecutor.py
│ └── __init__.py
└── /path/to/executors/
├── MyAwesomeExecutor/
│ ├── Dockerfile
│ ├── manifest.yml
│ ├── README.md
│ ├── requirements.txt
│ ├── __init__.py
│ ├── helper.py
│ └── MyAwesomeExecutor.py
└── ... 其他执行器目录
Dockerfile
:用于构建执行器的 Docker 镜像。manifest.yml
:定义了执行器镜像的元数据。README.md
:项目的说明文件。requirements.txt
:项目依赖的 Python 包列表。__init__.py
:Python 包的初始化文件。tests/
:包含项目的测试脚本。/path/to/executors/
:包含所有执行器的目录。
每个执行器目录内部结构如下:
MyAwesomeExecutor/
├── Dockerfile
├── manifest.yml
├── README.md
├── requirements.txt
├── __init__.py
├── helper.py
└── MyAwesomeExecutor.py
Dockerfile
:构建执行器的 Docker 镜像文件。manifest.yml
:执行器的配置文件。README.md
:执行器的说明文档。requirements.txt
:执行器依赖的 Python 包。__init__.py
:将目录作为 Python 包使用。helper.py
:执行器可能需要的辅助函数。MyAwesomeExecutor.py
:执行器的主要逻辑。
2. 项目的启动文件介绍
项目的启动主要是通过构建 Docker 镜像,并使用 Jina Hub 提供的命令来完成。以下是一些基本步骤:
-
构建执行器镜像:
jina hub build /path/to/MyAwesomeExecutor/
-
推送镜像到 Jina Hub:
jina hub login jina hub push jinahub/type.kind.jina_image_name:image_version-jina_version
-
在 Flow 中使用镜像:
from jina import Flow with Flow().add(uses='docker://my_image_tag'): pass
3. 项目的配置文件介绍
项目的配置文件是 manifest.yml
,它定义了执行器镜像的元数据,包括版本、类型、描述等。以下是一个 manifest.yml
的示例:
manifest_version: 1
type: pod
kind: encoder
name: MyAwesomeExecutor
description: My custom executor for encoding data
author: Jina AI Dev-Team (dev-team@jina.ai)
url: https://jina.ai
documentation: https://docs.jina.ai
version: 0.0.1
vendor: Jina AI Limited
license: apache-2.0
platform: [linux/amd64]
keywords: [encoder, custom, example]
这个文件中的每个字段都有其特定的作用:
manifest_version
:定义了 manifest 文件使用的协议版本。type
和kind
:定义了镜像的类型和种类。name
:镜像的人类可读标题。description
:软件包中包含的软件的描述。author
:负责镜像的人员或组织的联系信息。url
:找到有关镜像的更多信息。documentation
:获取镜像文档的 URL。version
:镜像的版本号。vendor
:分发实体的名称。license
:软件分发的许可证。platform
:镜像构建的 CPU 架构。keywords
:帮助用户过滤和定位包的关键字列表。
以上是根据 Jina Hub 开源项目链接生成的使用教程。希望对您有所帮助。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
226
2.28 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.43 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
214
288