OpenWhisk项目中Invoker组件更新与部署实践
问题背景
在分布式OpenWhisk环境中,当我们需要对Invoker组件进行代码修改时,往往会遇到修改后的代码无法在日志中体现的问题。这种情况通常发生在多机部署环境中,特别是当Controller和Invoker分别部署在不同服务器时。
问题现象
开发者修改了FunctionPullingContainerProxy.scala文件中的日志输出内容,重新构建了Invoker镜像并部署后,发现日志中仍然显示旧的输出内容。具体表现为:
- 修改了日志消息从"No more run activation..."变为"No more run Activation --testing-- is coming..."
- 通过gradlew命令重新构建了Invoker镜像
- 使用Ansible重新部署了OpenWhisk环境
- 检查日志发现修改未生效
根本原因分析
经过深入排查,发现问题源于以下两个方面:
-
镜像部署机制问题:在多机环境中,Ansible配置文件中可能被临时修改为总是拉取nightly版本的Invoker镜像,导致本地构建的镜像被覆盖。
-
镜像分发问题:在Controller机器上构建的Invoker镜像没有正确同步到运行Invoker的其他机器上,导致实际运行的仍然是旧版本镜像。
解决方案
方案一:手动镜像分发
-
构建镜像:在Controller节点上执行构建命令
./gradlew :core:invoker:clean :core:invoker:distDocker
-
导出镜像:将构建好的镜像导出为tar文件
docker save -o invoker.tar whisk/invoker:latest
-
传输镜像:将tar文件传输到所有运行Invoker的节点
scp invoker.tar user@invoker-machine:~/
-
加载镜像:在各Invoker节点上加载镜像
docker load -i ~/invoker.tar
-
重新部署:使用Ansible重新部署OpenWhisk
cd ansible sudo ansible-playbook -i environments/local openwhisk.yml
方案二:自动化镜像分发
通过修改Ansible的deploy.yml文件,可以实现镜像分发的自动化:
- name: Save invoker Docker image
command: docker save -o /tmp/invoker.tar whisk/invoker:latest
delegate_to: localhost
run_once: true
- name: Copy invoker image to all Invoker machines
copy:
src: /tmp/invoker.tar
dest: /tmp/invoker.tar
- name: Load invoker Docker image on Invoker machines
command: docker load -i /tmp/invoker.tar
方案三:使用私有镜像仓库
更专业的做法是搭建私有Docker镜像仓库,在构建镜像时指定私有仓库地址:
-
构建时指定仓库:通过gradle参数指定目标仓库
./gradlew distDocker -PdockerRegistry=your.private.registry/
-
配置Ansible使用私有仓库:修改Ansible配置,从私有仓库拉取镜像
最佳实践建议
-
环境一致性:确保所有节点的Docker环境配置一致,特别是镜像仓库配置
-
版本控制:为自定义镜像打上明确的版本标签,避免与官方镜像混淆
-
构建验证:在构建完成后,立即验证镜像是否包含预期的修改
-
部署前检查:在部署前确认各节点上的镜像版本
-
日志监控:部署后立即检查日志,确认修改是否生效
总结
在OpenWhisk的分布式环境中更新Invoker组件需要特别注意镜像的分发机制。相比单机环境,多机部署需要额外的步骤来确保所有节点都使用更新后的镜像。通过建立规范的镜像分发流程,可以显著提高开发效率和部署可靠性。对于生产环境,建议采用私有镜像仓库方案,这不仅能解决镜像分发问题,还能提供更好的版本管理和安全控制。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









