OpenWhisk项目中Invoker组件更新与部署实践
问题背景
在分布式OpenWhisk环境中,当我们需要对Invoker组件进行代码修改时,往往会遇到修改后的代码无法在日志中体现的问题。这种情况通常发生在多机部署环境中,特别是当Controller和Invoker分别部署在不同服务器时。
问题现象
开发者修改了FunctionPullingContainerProxy.scala文件中的日志输出内容,重新构建了Invoker镜像并部署后,发现日志中仍然显示旧的输出内容。具体表现为:
- 修改了日志消息从"No more run activation..."变为"No more run Activation --testing-- is coming..."
- 通过gradlew命令重新构建了Invoker镜像
- 使用Ansible重新部署了OpenWhisk环境
- 检查日志发现修改未生效
根本原因分析
经过深入排查,发现问题源于以下两个方面:
-
镜像部署机制问题:在多机环境中,Ansible配置文件中可能被临时修改为总是拉取nightly版本的Invoker镜像,导致本地构建的镜像被覆盖。
-
镜像分发问题:在Controller机器上构建的Invoker镜像没有正确同步到运行Invoker的其他机器上,导致实际运行的仍然是旧版本镜像。
解决方案
方案一:手动镜像分发
-
构建镜像:在Controller节点上执行构建命令
./gradlew :core:invoker:clean :core:invoker:distDocker -
导出镜像:将构建好的镜像导出为tar文件
docker save -o invoker.tar whisk/invoker:latest -
传输镜像:将tar文件传输到所有运行Invoker的节点
scp invoker.tar user@invoker-machine:~/ -
加载镜像:在各Invoker节点上加载镜像
docker load -i ~/invoker.tar -
重新部署:使用Ansible重新部署OpenWhisk
cd ansible sudo ansible-playbook -i environments/local openwhisk.yml
方案二:自动化镜像分发
通过修改Ansible的deploy.yml文件,可以实现镜像分发的自动化:
- name: Save invoker Docker image
command: docker save -o /tmp/invoker.tar whisk/invoker:latest
delegate_to: localhost
run_once: true
- name: Copy invoker image to all Invoker machines
copy:
src: /tmp/invoker.tar
dest: /tmp/invoker.tar
- name: Load invoker Docker image on Invoker machines
command: docker load -i /tmp/invoker.tar
方案三:使用私有镜像仓库
更专业的做法是搭建私有Docker镜像仓库,在构建镜像时指定私有仓库地址:
-
构建时指定仓库:通过gradle参数指定目标仓库
./gradlew distDocker -PdockerRegistry=your.private.registry/ -
配置Ansible使用私有仓库:修改Ansible配置,从私有仓库拉取镜像
最佳实践建议
-
环境一致性:确保所有节点的Docker环境配置一致,特别是镜像仓库配置
-
版本控制:为自定义镜像打上明确的版本标签,避免与官方镜像混淆
-
构建验证:在构建完成后,立即验证镜像是否包含预期的修改
-
部署前检查:在部署前确认各节点上的镜像版本
-
日志监控:部署后立即检查日志,确认修改是否生效
总结
在OpenWhisk的分布式环境中更新Invoker组件需要特别注意镜像的分发机制。相比单机环境,多机部署需要额外的步骤来确保所有节点都使用更新后的镜像。通过建立规范的镜像分发流程,可以显著提高开发效率和部署可靠性。对于生产环境,建议采用私有镜像仓库方案,这不仅能解决镜像分发问题,还能提供更好的版本管理和安全控制。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00