ggplot2中分步颜色标度的使用技巧与实现原理
2025-06-01 22:12:16作者:幸俭卉
在数据可视化中,颜色标度(Color Scale)是将数值数据映射到颜色空间的重要工具。ggplot2作为R语言中最流行的可视化包之一,提供了丰富的颜色标度函数来满足不同的可视化需求。本文将深入探讨ggplot2中scale_*_steps*系列函数的使用方法、实现原理以及与相关函数的对比。
分步颜色标度的基本概念
分步颜色标度(Step Color Scale)是一种将连续变量离散化的颜色映射方式,它将数值范围划分为若干个区间,每个区间赋予一个固定的颜色。这种标度特别适合以下场景:
- 数据本身是离散的或需要被离散化展示
- 强调数据的分类特征而非连续变化
- 需要更清晰地展示数据的分界点
ggplot2提供了两种主要的分步颜色标度实现方式:
scale_*_binned()系列函数scale_*_steps*()系列函数
两种实现方式的差异
虽然两种函数都能实现分步颜色标度,但它们的内部工作机制存在本质区别:
-
scale_*_binned():
- 使用离散调色板
- 每个区间(bin)对应调色板中的一个颜色
- 颜色分配与区间宽度无关
- 适合需要明确区分不同区间的场景
-
scale__steps():
- 使用连续调色板
- 将区间中点映射到连续颜色空间
- 颜色分配考虑了区间位置
- 适合需要保持颜色渐变感的离散化场景
实际应用示例
让我们通过一个具体例子来展示两者的差异:
library(ggplot2)
library(patchwork)
# 使用mpg数据集
p <- ggplot(mpg, aes(displ, hwy, colour = cty)) +
geom_point()
# 设置不均匀的断点
breaks <- c(8, 10, 12, 16, 20, 24)
# binned方式
p1 <- p +
scale_colour_binned(type = "viridis", breaks = breaks) +
labs(title = "binned")
# stepsn方式
p2 <- p +
scale_colour_stepsn(colours = viridis::viridis(9), breaks = breaks) +
labs(title = "stepsn")
# 并排比较
p1 + p2
从结果可以看出:
- binned方式每个区间颜色变化均匀,不受区间宽度影响
- stepsn方式在宽区间内颜色变化更明显,反映了区间中点位置
最新改进
ggplot2的最新版本对scale_colour_binned()进行了增强,现在它可以直接接受自定义的颜色向量作为调色板:
palmerpenguins::penguins |>
ggplot() +
geom_point(aes(x = flipper_length_mm, y = body_mass_g, col = flipper_length_mm)) +
scale_colour_binned(palette = viridis::mako(9))
这一改进使得用户能够更灵活地控制分步颜色标度的外观,同时保持了离散化的颜色分配方式。
使用建议
根据实际需求选择合适的函数:
- 如果需要明确的颜色区分,使用
scale_*_binned() - 如果需要保持颜色渐变感,使用
scale_*_steps*() - 对于自定义颜色方案,新版
scale_*_binned()是更好的选择
理解这些函数的内部机制有助于我们在数据可视化中做出更合适的选择,从而更有效地传达数据信息。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
138
169
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
632
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
695
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
197
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460