Face-SPARNet: 人脸超分辨率开源项目教程
2025-05-20 00:49:53作者:蔡怀权
1. 项目介绍
Face-SPARNet是一个基于PyTorch的开源项目,用于实现人脸超分辨率技术。该项目提出了一种新的学习方法——学习空间注意力的超分辨率,旨在通过空间注意力机制提升低分辨率人脸图像的清晰度。项目基于CycleGAN框架,并进行了扩展和优化,以实现更高质量的图像重建。
2. 项目快速启动
环境准备
- 操作系统:Ubuntu 18.04
- CUDA版本:10.1
- Python版本:3.7
- 安装依赖:
pip3 install -r requirements.txt
克隆项目
git clone https://github.com/chaofengc/Face-SPARNet.git
cd Face-SPARNet
下载预训练模型和数据集
从提供的链接下载预训练模型和数据集,并将它们分别放置在./pretrain_models和./test_dirs目录下。
测试预训练模型
项目提供了test.sh脚本,用于测试预训练模型。以下是测试命令的一个示例:
bash test.sh
在测试时,请注意:
- SPARNet模型用于将16x16的低分辨率人脸图像超采样到128x128。
- SPARNetHD模型用于增强低质量的人脸图像,生成512x512的高质量输出。
- 使用
--dataroot指定测试输入目录。 - 使用
--save_as_dir指定结果保存路径。
训练模型
训练模型的命令可在train.sh脚本中找到。训练之前,请确保下载了CelebA和FFHQ数据集,并根据实际情况修改--dataroot路径。以下是一个训练命令的示例:
bash train.sh
在训练时,请注意:
- 对于SPARNet模型,从CelebA数据集中直接裁剪人脸进行训练。
- 对于SPARNetHD模型,至少需要25GB内存来训练批次大小为2的模型。
- 使用
--name选项为不同的实验设置名称。 - 使用
--gpus指定用于训练的GPU数量。
3. 应用案例和最佳实践
- 单张图像的人脸增强:项目提供了
test_enhance_single_unalign.py脚本,用于对单张图像进行人脸增强和校准。 - 性能比较:项目对比了2D和3D注意力机制在不同模型上的性能,提供了模型参数和指标的比较。
4. 典型生态项目
Face-SPARNet项目是基于CycleGAN框架开发的,因此与CycleGAN相关的项目都可视作其生态系统的一部分。此外,该项目也受到DICNet项目的启发,可以在研究和实践中参考这两个项目的结合使用。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328