首页
/ X-AnyLabeling项目中RT-DETR模型标注图像报错解决方案

X-AnyLabeling项目中RT-DETR模型标注图像报错解决方案

2025-06-08 13:33:19作者:管翌锬

在使用X-AnyLabeling项目进行图像标注时,当尝试加载RT-DETR模型进行自动标注时,可能会遇到"Required inputs (['orig_target_sizes']) are missing from input feed (['images'])"的错误提示。这个问题通常与模型转换和输入参数处理有关。

问题分析

这个错误表明模型在推理时缺少必要的输入参数。RT-DETR模型在推理过程中需要接收特定的输入张量,包括原始目标尺寸(orig_target_sizes)信息。当这些必需的输入参数没有正确传递给模型时,就会触发此类错误。

解决方案

方法一:使用官方预转换模型

最直接的解决方案是使用项目官方提供的预转换ONNX模型。这些模型已经过充分测试,确保输入输出格式与X-AnyLabeling的推理代码完全兼容。官方模型在转换过程中已经正确处理了所有必需的输入参数。

方法二:自定义模型转换

如果需要使用自定义训练的RT-DETR模型,需要确保转换过程正确无误。模型转换时应注意以下几点:

  1. 导出模型时保留所有必要的输入节点
  2. 确保输入输出张量的维度与预期一致
  3. 处理模型的后处理部分,使其与X-AnyLabeling的接口兼容

方法三:修改推理脚本

对于已经转换好的自定义模型,可以修改X-AnyLabeling中的RT-DETR推理脚本以适应模型的特定需求。主要修改点包括:

  1. 调整输入预处理部分,添加缺失的输入参数
  2. 确保输入张量的格式和尺寸符合模型要求
  3. 可能需要调整后处理逻辑以匹配模型的输出格式

最佳实践建议

  1. 优先使用官方提供的预训练模型,确保兼容性
  2. 如需使用自定义模型,建议参考标准的模型转换流程
  3. 在修改推理脚本前,先充分理解模型的输入输出要求
  4. 测试时使用少量样本验证模型的正确性

通过以上方法,可以解决RT-DETR模型在X-AnyLabeling中标注图像时出现的输入参数缺失问题,确保自动标注功能的正常使用。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
176
260
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
507
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
255
299
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
kernelkernel
deepin linux kernel
C
21
5