X-AnyLabeling项目中RT-DETR模型标注图像报错解决方案
2025-06-08 08:43:09作者:管翌锬
在使用X-AnyLabeling项目进行图像标注时,当尝试加载RT-DETR模型进行自动标注时,可能会遇到"Required inputs (['orig_target_sizes']) are missing from input feed (['images'])"的错误提示。这个问题通常与模型转换和输入参数处理有关。
问题分析
这个错误表明模型在推理时缺少必要的输入参数。RT-DETR模型在推理过程中需要接收特定的输入张量,包括原始目标尺寸(orig_target_sizes)信息。当这些必需的输入参数没有正确传递给模型时,就会触发此类错误。
解决方案
方法一:使用官方预转换模型
最直接的解决方案是使用项目官方提供的预转换ONNX模型。这些模型已经过充分测试,确保输入输出格式与X-AnyLabeling的推理代码完全兼容。官方模型在转换过程中已经正确处理了所有必需的输入参数。
方法二:自定义模型转换
如果需要使用自定义训练的RT-DETR模型,需要确保转换过程正确无误。模型转换时应注意以下几点:
- 导出模型时保留所有必要的输入节点
- 确保输入输出张量的维度与预期一致
- 处理模型的后处理部分,使其与X-AnyLabeling的接口兼容
方法三:修改推理脚本
对于已经转换好的自定义模型,可以修改X-AnyLabeling中的RT-DETR推理脚本以适应模型的特定需求。主要修改点包括:
- 调整输入预处理部分,添加缺失的输入参数
- 确保输入张量的格式和尺寸符合模型要求
- 可能需要调整后处理逻辑以匹配模型的输出格式
最佳实践建议
- 优先使用官方提供的预训练模型,确保兼容性
- 如需使用自定义模型,建议参考标准的模型转换流程
- 在修改推理脚本前,先充分理解模型的输入输出要求
- 测试时使用少量样本验证模型的正确性
通过以上方法,可以解决RT-DETR模型在X-AnyLabeling中标注图像时出现的输入参数缺失问题,确保自动标注功能的正常使用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355