首页
/ X-AnyLabeling项目中RT-DETR模型标注图像报错解决方案

X-AnyLabeling项目中RT-DETR模型标注图像报错解决方案

2025-06-08 13:33:19作者:管翌锬

在使用X-AnyLabeling项目进行图像标注时,当尝试加载RT-DETR模型进行自动标注时,可能会遇到"Required inputs (['orig_target_sizes']) are missing from input feed (['images'])"的错误提示。这个问题通常与模型转换和输入参数处理有关。

问题分析

这个错误表明模型在推理时缺少必要的输入参数。RT-DETR模型在推理过程中需要接收特定的输入张量,包括原始目标尺寸(orig_target_sizes)信息。当这些必需的输入参数没有正确传递给模型时,就会触发此类错误。

解决方案

方法一:使用官方预转换模型

最直接的解决方案是使用项目官方提供的预转换ONNX模型。这些模型已经过充分测试,确保输入输出格式与X-AnyLabeling的推理代码完全兼容。官方模型在转换过程中已经正确处理了所有必需的输入参数。

方法二:自定义模型转换

如果需要使用自定义训练的RT-DETR模型,需要确保转换过程正确无误。模型转换时应注意以下几点:

  1. 导出模型时保留所有必要的输入节点
  2. 确保输入输出张量的维度与预期一致
  3. 处理模型的后处理部分,使其与X-AnyLabeling的接口兼容

方法三:修改推理脚本

对于已经转换好的自定义模型,可以修改X-AnyLabeling中的RT-DETR推理脚本以适应模型的特定需求。主要修改点包括:

  1. 调整输入预处理部分,添加缺失的输入参数
  2. 确保输入张量的格式和尺寸符合模型要求
  3. 可能需要调整后处理逻辑以匹配模型的输出格式

最佳实践建议

  1. 优先使用官方提供的预训练模型,确保兼容性
  2. 如需使用自定义模型,建议参考标准的模型转换流程
  3. 在修改推理脚本前,先充分理解模型的输入输出要求
  4. 测试时使用少量样本验证模型的正确性

通过以上方法,可以解决RT-DETR模型在X-AnyLabeling中标注图像时出现的输入参数缺失问题,确保自动标注功能的正常使用。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133