探索多模态学习的平衡之道:OGM-GE在PyTorch中的实现
项目介绍
在多模态学习领域,模态之间的不平衡问题一直是制约模型性能提升的关键因素。为了解决这一问题,我们推出了OGM-GE(On-the-fly Gradient Modulation with Gaussian Enhancement),这是一个灵活的插件模块,旨在增强多模态学习的优化过程。OGM-GE的核心思想是通过动态调整梯度来平衡不同模态的训练,从而提升模型的整体性能。
OGM-GE的提出源于CVPR 2022的论文《Balanced Multimodal Learning via On-the-fly Gradient Modulation》,该论文详细阐述了OGM-GE的原理和实现方法。目前,OGM-GE已经在多个任务和数据集上得到了验证,并取得了显著的效果提升。
项目技术分析
OGM-GE的核心技术包括两个主要模块:
-
On-the-fly Gradient Modulation (OGM):通过动态调整梯度,OGM能够自适应地平衡不同模态之间的训练过程。这种调整不仅能够提升多模态模型的性能,还能增强单模态的表示能力。
-
Adaptive Gaussian noise Enhancement (GE):GE模块通过引入高斯噪声来恢复梯度强度,从而增强模型的泛化能力。这种噪声的引入能够在训练过程中保持梯度的稳定性,避免过拟合。
OGM-GE的设计理念是简单而有效,它可以作为一个插件模块集成到现有的多模态融合框架中,无需对现有模型结构进行大幅修改。
项目及技术应用场景
OGM-GE适用于多种多模态学习任务,特别是在以下场景中表现尤为突出:
- 动作识别:在UCF101数据集上,OGM-GE将RGB和光流模态的识别准确率从82.3%提升至84.0%。
- 知识图谱链接预测:在OpenBG-Complete-IMG+数据集上,OGM-GE将图像和OCR模态的预测准确率从59.4%提升至60.1%。
此外,OGM-GE还被应用于音频-视觉细粒度任务中,如音频-视觉谣言检测和多模态学习中的原型模态重平衡等,均取得了显著的效果提升。
项目特点
OGM-GE具有以下显著特点:
- 灵活性:作为一个插件模块,OGM-GE可以轻松集成到现有的多模态学习框架中,无需对模型结构进行大幅修改。
- 自适应性:OGM模块能够根据模态之间的不平衡情况动态调整梯度,确保每个模态都能得到充分的训练。
- 泛化能力:GE模块通过引入高斯噪声,增强了模型的泛化能力,避免了过拟合问题。
- 效果显著:在多个任务和数据集上,OGM-GE均取得了显著的效果提升,证明了其有效性和广泛适用性。
结语
OGM-GE为多模态学习提供了一种简单而有效的解决方案,能够显著提升模型的性能和泛化能力。无论你是多模态学习的研究者还是开发者,OGM-GE都值得你一试。快来体验OGM-GE带来的性能提升吧!
如果你对OGM-GE感兴趣,欢迎访问我们的GitHub项目页面获取更多信息。如果你有任何问题或建议,也可以通过邮件与我们联系:yakewei@ruc.edu.cn 和 andongdeng69@gmail.com。
参考文献
@inproceedings{Peng2022Balanced,
title = {Balanced Multimodal Learning via On-the-fly Gradient Modulation},
author = {Peng, Xiaokang and Wei, Yake and Deng, Andong and Wang, Dong and Hu, Di},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year = {2022}
}
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0288Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









