首页
/ 探索多模态学习的平衡之道:OGM-GE在PyTorch中的实现

探索多模态学习的平衡之道:OGM-GE在PyTorch中的实现

2024-10-10 07:15:42作者:袁立春Spencer

项目介绍

在多模态学习领域,模态之间的不平衡问题一直是制约模型性能提升的关键因素。为了解决这一问题,我们推出了OGM-GE(On-the-fly Gradient Modulation with Gaussian Enhancement),这是一个灵活的插件模块,旨在增强多模态学习的优化过程。OGM-GE的核心思想是通过动态调整梯度来平衡不同模态的训练,从而提升模型的整体性能。

OGM-GE的提出源于CVPR 2022的论文《Balanced Multimodal Learning via On-the-fly Gradient Modulation》,该论文详细阐述了OGM-GE的原理和实现方法。目前,OGM-GE已经在多个任务和数据集上得到了验证,并取得了显著的效果提升。

项目技术分析

OGM-GE的核心技术包括两个主要模块:

  1. On-the-fly Gradient Modulation (OGM):通过动态调整梯度,OGM能够自适应地平衡不同模态之间的训练过程。这种调整不仅能够提升多模态模型的性能,还能增强单模态的表示能力。

  2. Adaptive Gaussian noise Enhancement (GE):GE模块通过引入高斯噪声来恢复梯度强度,从而增强模型的泛化能力。这种噪声的引入能够在训练过程中保持梯度的稳定性,避免过拟合。

OGM-GE的设计理念是简单而有效,它可以作为一个插件模块集成到现有的多模态融合框架中,无需对现有模型结构进行大幅修改。

项目及技术应用场景

OGM-GE适用于多种多模态学习任务,特别是在以下场景中表现尤为突出:

  • 动作识别:在UCF101数据集上,OGM-GE将RGB和光流模态的识别准确率从82.3%提升至84.0%。
  • 知识图谱链接预测:在OpenBG-Complete-IMG+数据集上,OGM-GE将图像和OCR模态的预测准确率从59.4%提升至60.1%。

此外,OGM-GE还被应用于音频-视觉细粒度任务中,如音频-视觉谣言检测和多模态学习中的原型模态重平衡等,均取得了显著的效果提升。

项目特点

OGM-GE具有以下显著特点:

  1. 灵活性:作为一个插件模块,OGM-GE可以轻松集成到现有的多模态学习框架中,无需对模型结构进行大幅修改。
  2. 自适应性:OGM模块能够根据模态之间的不平衡情况动态调整梯度,确保每个模态都能得到充分的训练。
  3. 泛化能力:GE模块通过引入高斯噪声,增强了模型的泛化能力,避免了过拟合问题。
  4. 效果显著:在多个任务和数据集上,OGM-GE均取得了显著的效果提升,证明了其有效性和广泛适用性。

结语

OGM-GE为多模态学习提供了一种简单而有效的解决方案,能够显著提升模型的性能和泛化能力。无论你是多模态学习的研究者还是开发者,OGM-GE都值得你一试。快来体验OGM-GE带来的性能提升吧!

如果你对OGM-GE感兴趣,欢迎访问我们的GitHub项目页面获取更多信息。如果你有任何问题或建议,也可以通过邮件与我们联系:yakewei@ruc.edu.cnandongdeng69@gmail.com


参考文献

@inproceedings{Peng2022Balanced,
  title	= {Balanced Multimodal Learning via On-the-fly Gradient Modulation},
  author = {Peng, Xiaokang and Wei, Yake and Deng, Andong and Wang, Dong and Hu, Di},
  booktitle	= {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year	= {2022}
}
登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
338
1.18 K
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
898
534
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
188
265
kernelkernel
deepin linux kernel
C
22
6
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
140
188
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
374
387
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
86
4
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
arkanalyzerarkanalyzer
方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
114
45