探索多模态学习的平衡之道:OGM-GE在PyTorch中的实现
项目介绍
在多模态学习领域,模态之间的不平衡问题一直是制约模型性能提升的关键因素。为了解决这一问题,我们推出了OGM-GE(On-the-fly Gradient Modulation with Gaussian Enhancement),这是一个灵活的插件模块,旨在增强多模态学习的优化过程。OGM-GE的核心思想是通过动态调整梯度来平衡不同模态的训练,从而提升模型的整体性能。
OGM-GE的提出源于CVPR 2022的论文《Balanced Multimodal Learning via On-the-fly Gradient Modulation》,该论文详细阐述了OGM-GE的原理和实现方法。目前,OGM-GE已经在多个任务和数据集上得到了验证,并取得了显著的效果提升。
项目技术分析
OGM-GE的核心技术包括两个主要模块:
-
On-the-fly Gradient Modulation (OGM):通过动态调整梯度,OGM能够自适应地平衡不同模态之间的训练过程。这种调整不仅能够提升多模态模型的性能,还能增强单模态的表示能力。
-
Adaptive Gaussian noise Enhancement (GE):GE模块通过引入高斯噪声来恢复梯度强度,从而增强模型的泛化能力。这种噪声的引入能够在训练过程中保持梯度的稳定性,避免过拟合。
OGM-GE的设计理念是简单而有效,它可以作为一个插件模块集成到现有的多模态融合框架中,无需对现有模型结构进行大幅修改。
项目及技术应用场景
OGM-GE适用于多种多模态学习任务,特别是在以下场景中表现尤为突出:
- 动作识别:在UCF101数据集上,OGM-GE将RGB和光流模态的识别准确率从82.3%提升至84.0%。
- 知识图谱链接预测:在OpenBG-Complete-IMG+数据集上,OGM-GE将图像和OCR模态的预测准确率从59.4%提升至60.1%。
此外,OGM-GE还被应用于音频-视觉细粒度任务中,如音频-视觉谣言检测和多模态学习中的原型模态重平衡等,均取得了显著的效果提升。
项目特点
OGM-GE具有以下显著特点:
- 灵活性:作为一个插件模块,OGM-GE可以轻松集成到现有的多模态学习框架中,无需对模型结构进行大幅修改。
- 自适应性:OGM模块能够根据模态之间的不平衡情况动态调整梯度,确保每个模态都能得到充分的训练。
- 泛化能力:GE模块通过引入高斯噪声,增强了模型的泛化能力,避免了过拟合问题。
- 效果显著:在多个任务和数据集上,OGM-GE均取得了显著的效果提升,证明了其有效性和广泛适用性。
结语
OGM-GE为多模态学习提供了一种简单而有效的解决方案,能够显著提升模型的性能和泛化能力。无论你是多模态学习的研究者还是开发者,OGM-GE都值得你一试。快来体验OGM-GE带来的性能提升吧!
如果你对OGM-GE感兴趣,欢迎访问我们的GitHub项目页面获取更多信息。如果你有任何问题或建议,也可以通过邮件与我们联系:yakewei@ruc.edu.cn 和 andongdeng69@gmail.com。
参考文献
@inproceedings{Peng2022Balanced,
title = {Balanced Multimodal Learning via On-the-fly Gradient Modulation},
author = {Peng, Xiaokang and Wei, Yake and Deng, Andong and Wang, Dong and Hu, Di},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year = {2022}
}
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00