LLaMA-Factory项目中Kimi-VL-A3B-Instruct模型全量微调的内存优化实践
问题背景
在LLaMA-Factory项目中使用Kimi-VL-A3B-Instruct模型进行全量微调时,研究人员遇到了内存不足(OOM)的问题。该模型是一个16B参数规模的多模态大语言模型,相比Qwen2.5VL模型大一倍左右。即使在配备了8块96GB显存的H20 GPU的高性能计算环境中,仍然出现了显存溢出的情况。
问题分析
通过详细的错误日志分析,可以确定内存问题主要出现在以下几个方面:
-
模型规模过大:Kimi-VL-A3B-Instruct作为16B参数规模的模型,其内存需求本身就很高,特别是在全量微调模式下,需要存储所有参数的梯度信息。
-
序列长度设置:初始配置中设置的cutoff_len(截断长度)为16384,这个超长序列会显著增加计算过程中的中间状态内存占用。
-
训练配置:使用DeepSpeed Zero Stage 3策略时,虽然可以优化参数存储,但在梯度计算和同步阶段仍然需要大量临时内存。
-
注意力机制实现:日志显示模型没有正确使用Flash Attention 2优化,导致注意力计算部分的内存效率不高。
解决方案
针对上述问题,可以采取以下优化措施:
-
降低序列长度:将cutoff_len从16384降低到更合理的值(如4096或更低),这可以显著减少计算过程中的中间状态内存占用。
-
启用Flash Attention 2:确保环境正确安装flash-attn库,并在配置中明确启用fa2选项,以优化注意力计算的内存效率。
-
冻结部分参数:对于多模态模型,可以冻结视觉塔(vision tower)和多模态投影器(multi-modal projector),只微调语言模型部分。
-
调整批处理大小:将per_device_train_batch_size设为1,并适当增加gradient_accumulation_steps,以平衡内存使用和训练稳定性。
-
使用流式数据处理:配置streaming和buffer_size参数,避免一次性加载过多数据到内存中。
-
优化DeepSpeed配置:检查并调整DeepSpeed Zero Stage 3的配置参数,确保其与硬件环境匹配。
实践建议
对于大模型全量微调,建议采取渐进式优化策略:
-
首先从最小配置开始(如最小序列长度、最小批次大小),确保可以正常运行。
-
逐步增加配置参数,监控显存使用情况,找到最优的平衡点。
-
优先冻结不需要微调的组件,减少可训练参数数量。
-
充分利用混合精度训练(bf16)和梯度检查点等技术来节省显存。
-
对于特别大的模型,可以考虑使用参数高效微调方法(如LoRA)替代全量微调。
总结
Kimi-VL-A3B-Instruct等大规模多模态模型的全量微调对计算资源要求极高。通过合理的配置优化和内存管理策略,可以在有限资源下实现有效微调。关键是要理解模型各组件的内存需求特点,有针对性地进行优化,在模型性能和计算资源之间找到最佳平衡点。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00