Style Dictionary 中 DTCG 格式的引用排序问题解析
问题背景
在 Style Dictionary 这个流行的设计令牌管理工具中,用户在使用 DTCG(Design Tokens Community Group)标准格式时遇到了一个关键问题:当设计令牌之间存在引用关系时,生成的 CSS/Sass 变量声明顺序出现了错误。
问题现象
在传统的 Style Dictionary 格式下,当定义如下设计令牌时:
{
"colors": {
"red": {
"value": "#ff0000",
"type": "color"
},
"primary": {
"value": "{colors.red}",
"type": "color"
}
}
}
生成的 Sass 变量输出顺序是正确的:
$colors-red: #ff0000;
$colors-primary: $colors-red;
但当切换到 DTCG 格式后:
{
"colors": {
"red": {
"$value": "#ff0000",
"$type": "color"
},
"primary": {
"$value": "{colors.red}",
"$type": "color"
}
}
}
生成的 Sass 变量顺序却出现了问题:
$colors-primary: $colors-red;
$colors-red: #ff0000;
这种错误的声明顺序会导致 CSS 预处理器报错,因为变量在被引用时尚未定义。
技术原因分析
问题的根源在于 Style Dictionary 的 sortByReference 函数实现。该函数负责确保被引用的变量先于引用它们的变量声明。在 DTCG 格式下,函数未能正确处理以 $ 为前缀的属性名(如 $value 替代传统的 value)。
具体来说,sortByReference 函数内部仍然硬编码检查 value 属性,而没有根据 usesDtcg 配置动态调整为检查 $value 属性。这导致函数无法正确识别 DTCG 格式下的引用关系,从而产生错误的排序结果。
解决方案探讨
临时解决方案
目前可以通过修改 sortByReference 函数,使其根据 usesDtcg 配置动态选择检查 value 或 $value 属性。这需要在函数调用时传递 usesDtcg 选项。
长期架构改进
从架构角度看,当前实现存在几个问题:
-
代码重复:整个代码库中大量存在
usesDtcg ? '$value' : 'value'这样的条件判断,增加了维护成本。 -
测试覆盖不足:DTCG 格式的测试用例较少,主要集中在
w3c-forward-compat.test.js文件中。 -
混合格式支持:当前架构同时支持传统格式和 DTCG 格式,增加了复杂性。
理想的长期解决方案是在未来主要版本(如 v5)中:
-
统一内部格式:在内部处理阶段统一转换为 DTCG 格式,消除格式判断逻辑。
-
移除传统格式支持:简化代码库,专注于单一标准。
-
增强测试覆盖:为 DTCG 格式建立全面的测试套件。
开发者建议
对于当前需要解决此问题的开发者:
-
可以暂时使用 PR 提供的修复方案。
-
在自定义格式或转换器中,确保正确处理 DTCG 格式的属性名。
-
避免在设计令牌文件中混合使用传统格式和 DTCG 格式。
-
关注 Style Dictionary 的未来版本更新,计划向纯 DTCG 格式迁移。
总结
这个排序问题揭示了 Style Dictionary 在支持多格式标准时面临的架构挑战。虽然当前可以通过补丁修复,但根本解决方案需要更彻底的架构调整。这也提醒我们,在设计工具时,对新兴标准的支持需要更全面的考虑,包括测试覆盖和内部数据表示的统一性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00