HighwayEnv多智能体停车环境配置指南
2025-06-28 08:31:21作者:凤尚柏Louis
多智能体停车环境概述
HighwayEnv是一个优秀的自动驾驶模拟环境,其中parking-v0环境模拟了车辆在停车场中的泊车场景。该环境支持多智能体配置,允许同时控制多辆车辆完成泊车任务。然而在实际使用中,开发者可能会遇到一些配置上的问题。
常见配置问题分析
在配置多智能体停车环境时,开发者常会遇到以下两类问题:
-
观测空间类型不匹配:ParkingEnv默认需要KinematicsGoal类型的观测空间,而非普通的Kinematics观测。这是因为该环境设计时考虑了与StableBaselines3的HER(事后经验回放)算法的兼容性。
-
车辆初始位置异常:在多智能体设置中,车辆有时会生成在停车区域外,且所有车辆会尝试停入同一个车位,这不符合实际泊车场景的需求。
正确配置方法
要正确配置多智能体停车环境,应采用以下参数设置:
env.configure({
"controlled_vehicles": 3, # 控制3辆车辆
"vehicles_count": 1, # 环境中其他车辆数量
'lanes_count': 1, # 车道数量
"observation": {
"type": "MultiAgentObservation",
"observation_config": {
"type": "KinematicsGoal", # 必须使用KinematicsGoal类型
"features": ["x", "y", "vx", "vy", "cos_h", "sin_h"],
"scales": [100, 100, 5, 5, 1, 1],
"normalize": False,
}
},
"action": {
"type": "MultiAgentAction",
"action_config": {
"type": "DiscreteMetaAction",
}
}
})
多智能体行为的特殊性
当前版本的多智能体停车环境存在以下行为特点:
-
竞争与合作并存:所有智能体车辆会尝试停入同一个车位,形成竞争关系;但在最大化总奖励(各智能体奖励之和)时,又会表现出合作行为。
-
奖励机制:系统会鼓励一辆车成功泊入车位,而其他车辆则尽可能靠近该车位。
改进方向
更合理的多智能体停车环境应该:
- 为每辆智能体车辆分配独立的停车位目标
- 优化车辆初始生成位置,确保都在合理区域内
- 考虑车辆间的避碰机制
- 设计更合理的多车协同奖励函数
总结
HighwayEnv的parking-v0环境为研究多智能体自动驾驶提供了良好的基础平台。通过正确的配置参数,开发者可以构建多车协同泊车的研究环境。虽然当前版本在多智能体交互方面还有优化空间,但已经能够支持基本的多车控制研究。未来版本的改进将使这一环境更加贴近实际泊车场景。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217