HighwayEnv多智能体停车环境配置指南
2025-06-28 23:29:18作者:凤尚柏Louis
多智能体停车环境概述
HighwayEnv是一个优秀的自动驾驶模拟环境,其中parking-v0环境模拟了车辆在停车场中的泊车场景。该环境支持多智能体配置,允许同时控制多辆车辆完成泊车任务。然而在实际使用中,开发者可能会遇到一些配置上的问题。
常见配置问题分析
在配置多智能体停车环境时,开发者常会遇到以下两类问题:
-
观测空间类型不匹配:ParkingEnv默认需要KinematicsGoal类型的观测空间,而非普通的Kinematics观测。这是因为该环境设计时考虑了与StableBaselines3的HER(事后经验回放)算法的兼容性。
-
车辆初始位置异常:在多智能体设置中,车辆有时会生成在停车区域外,且所有车辆会尝试停入同一个车位,这不符合实际泊车场景的需求。
正确配置方法
要正确配置多智能体停车环境,应采用以下参数设置:
env.configure({
"controlled_vehicles": 3, # 控制3辆车辆
"vehicles_count": 1, # 环境中其他车辆数量
'lanes_count': 1, # 车道数量
"observation": {
"type": "MultiAgentObservation",
"observation_config": {
"type": "KinematicsGoal", # 必须使用KinematicsGoal类型
"features": ["x", "y", "vx", "vy", "cos_h", "sin_h"],
"scales": [100, 100, 5, 5, 1, 1],
"normalize": False,
}
},
"action": {
"type": "MultiAgentAction",
"action_config": {
"type": "DiscreteMetaAction",
}
}
})
多智能体行为的特殊性
当前版本的多智能体停车环境存在以下行为特点:
-
竞争与合作并存:所有智能体车辆会尝试停入同一个车位,形成竞争关系;但在最大化总奖励(各智能体奖励之和)时,又会表现出合作行为。
-
奖励机制:系统会鼓励一辆车成功泊入车位,而其他车辆则尽可能靠近该车位。
改进方向
更合理的多智能体停车环境应该:
- 为每辆智能体车辆分配独立的停车位目标
- 优化车辆初始生成位置,确保都在合理区域内
- 考虑车辆间的避碰机制
- 设计更合理的多车协同奖励函数
总结
HighwayEnv的parking-v0环境为研究多智能体自动驾驶提供了良好的基础平台。通过正确的配置参数,开发者可以构建多车协同泊车的研究环境。虽然当前版本在多智能体交互方面还有优化空间,但已经能够支持基本的多车控制研究。未来版本的改进将使这一环境更加贴近实际泊车场景。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
305
2.68 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
226
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460
暂无简介
Dart
596
130
React Native鸿蒙化仓库
JavaScript
233
309
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
614
仓颉编译器源码及 cjdb 调试工具。
C++
123
627
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
361
2.58 K