Stack项目CI构建性能优化:解决Linux环境下链接速度慢的问题
2025-06-16 05:29:34作者:昌雅子Ethen
背景介绍
在Stack项目的持续集成(CI)流程中,开发团队发现了一个显著的性能差异问题:在GitHub Actions的不同运行环境中,ubuntu-latest
运行器的执行时间(120分钟)比macos-13
运行器(42分钟)和windows-latest
运行器(39分钟)要长3倍左右。这种性能差异严重影响了开发效率,特别是在Linux环境下的构建和测试过程。
问题分析
通过详细的日志分析和性能对比,团队发现性能瓶颈主要集中在链接(link)阶段。具体表现为:
- 在集成测试4783中,链接操作在macOS上仅需4秒,而在Linux容器中却需要4分钟
- 四个关键链接点的性能差异尤为明显:
- Stack的Setup shim
- ghc-paths包的setup
- doctest工具
- foo测试套件
进一步调查发现,不同平台使用了不同的链接器:
- Linux容器默认使用GNU ld(ld.bfd)
- macOS使用Apple的专用链接器
- Windows使用LLVM的lld链接器
技术解决方案
针对Linux环境下链接速度慢的问题,团队采取了以下优化措施:
- 链接器替换:在Linux环境中安装并配置LLVM的lld链接器替代默认的GNU ld
- 构建流程调整:修改stack-integration-test可执行文件,使其在Linux环境下明确使用lld链接器
- CI流程优化:调整release.hs check脚本,让stack-integration-test在目标Stack环境下运行,但不再使用Alpine Linux Docker容器
优化效果
优化措施实施后,性能提升效果显著:
- 整体CI时间:从120分钟降至26分钟,减少了78%
- 集成测试时间:从6269秒降至683秒,性能提升近9倍
- 其他平台:macOS和Windows环境的性能保持稳定,没有明显变化
技术原理深入
为什么链接器选择对性能有如此大的影响?这主要涉及不同链接器的设计理念和实现方式:
- GNU ld(ld.bfd):传统的GNU链接器,稳定性高但速度较慢
- lld:LLVM项目开发的链接器,专为速度优化,特别适合大型项目
- Apple ld:macOS专用链接器,针对Apple平台进行了深度优化
在Haskell项目中,链接阶段通常需要处理大量符号和依赖关系,高效的链接器可以显著减少构建时间。特别是在CI环境中,频繁的构建和测试使得链接性能的影响被放大。
最佳实践建议
基于这次优化经验,可以总结出以下Haskell项目CI优化的建议:
- 链接器选择:在Linux环境下优先考虑使用lld或gold链接器
- 环境一致性:确保CI环境与开发环境使用相同的工具链配置
- 性能监控:建立CI性能基准,及时发现并解决性能退化问题
- 工具链定制:根据项目特点定制构建环境,移除不必要的组件
总结
Stack项目通过分析CI性能瓶颈,识别出链接器选择对构建时间的关键影响,并成功通过切换到更高效的lld链接器解决了问题。这一优化不仅大幅提升了Linux环境下的构建速度,也为其他Haskell项目提供了宝贵的性能优化经验。在持续集成环境中,工具链的合理配置往往能带来意想不到的性能提升,值得开发者关注和投入。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8