使用Go-Rod处理多页面并发截图的技术实践
Go-Rod是一个基于Go语言的浏览器自动化库,它提供了对Chrome DevTools Protocol的封装,使得开发者能够方便地进行网页自动化操作。在实际应用中,我们经常需要同时对多个网页进行截图操作,这时候就需要考虑并发处理的问题。
并发截图的技术挑战
在使用Go-Rod进行多页面并发截图时,开发者可能会遇到截图失败的情况。特别是在headful模式下(即非无头模式),当并发数大于1时,部分页面的截图可能会失败,而且每次失败的页面可能不同。
这种现象的根本原因在于headful模式下的页面渲染特性。在headless模式下,浏览器会模拟所有元素都处于"可见"和"可交互"状态,即使用户并不在当前页面。而在headful模式下,只有用户当前查看的页面区域中的元素才具有真正的"可见性"和"可交互性"。
解决方案与实践
针对这个问题,我们有以下几种解决方案:
-
使用headless模式:这是最简单的解决方案。headless模式下浏览器会确保所有页面元素都处于可渲染状态,不受用户是否查看的影响。
-
控制并发数量:如果必须使用headful模式,可以适当降低并发数,或者实现更精细的并发控制机制。
-
增加等待时间:在截图前增加适当的等待时间,确保页面完全加载和渲染完成。
-
检查页面状态:在截图前检查页面的加载状态和元素可见性,确保截图时页面处于可渲染状态。
最佳实践建议
在实际开发中,我们建议:
-
优先考虑使用headless模式进行自动化操作,除非有特殊需求必须使用headful模式。
-
实现完善的错误处理和重试机制,特别是对于截图等可能失败的操作。
-
合理设置超时时间,避免因网络或页面加载问题导致长时间阻塞。
-
考虑使用页面池技术来管理浏览器页面,避免频繁创建和销毁页面带来的性能开销。
-
对于关键操作,可以添加日志记录,便于问题排查和性能分析。
通过以上方法,开发者可以更稳定地使用Go-Rod进行多页面并发截图操作,提高自动化任务的可靠性和效率。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00