OpenRLHF项目中PRM训练时特殊标记数量不一致问题的分析与解决
问题背景
在OpenRLHF项目中进行PRM(Pairwise Ranking Model)训练时,使用Qwen2.5-14B模型时遇到了一个典型的数据处理问题。当模型训练到一半时,系统报错显示输入中的特殊标记数量与对应标签值的大小不匹配,具体表现为形状不匹配错误。
问题现象
错误信息显示,在数据处理阶段,系统尝试将一个形状为[6]的标签张量广播到形状为[7]的索引结果中,这显然无法完成。这种情况发生在自定义数据集的处理过程中,特别是当使用特殊标记"ки"作为步骤分隔符时。
根本原因分析
经过深入分析,这个问题主要由以下几个因素导致:
-
tokenizer处理不一致性:当使用"ки"作为特殊标记时,tokenizer可能会将其与前后的字符进行合并处理,导致实际生成的token数量与预期不符。
-
标记边界问题:直接使用"ки"而不加空格时,tokenizer可能将其与前一个词合并;而添加空格后(" ки ")又会导致额外的空格被单独token化。
-
数据集构建方式:当前的数据处理方式是将每个步骤文本后直接添加"ки",而没有考虑tokenizer对这些特殊标记的实际处理方式。
解决方案
针对这一问题,我们推荐以下几种解决方案:
-
使用未注册的特殊标记:最佳实践是使用tokenizer中未使用的特殊token作为分隔符,这样可以确保tokenizer会将其作为独立的token处理。
-
预处理验证:在构建数据集前,应该先对样本进行预处理验证,确保特殊标记被正确token化,并且生成的token数量与标签数量匹配。
-
动态调整机制:可以在数据处理代码中添加检查机制,当发现标记数量不匹配时,自动调整标签数量或给出明确警告。
实施建议
对于实际项目中的实施,我们建议:
-
在tokenizer中添加一个新的特殊token作为步骤分隔符,而不是使用现有词汇。
-
在数据处理流程中加入验证步骤,检查每个样本的特殊标记数量是否与标签数量一致。
-
考虑使用更鲁棒的数据预处理方法,如确保特殊标记前后有适当的空格或边界符号。
总结
在大型语言模型训练中,数据处理环节的细节往往决定了模型的最终性能。特殊标记的处理尤其需要注意tokenizer的具体行为,避免因为tokenization的不一致性导致训练失败。通过使用专门定义的特殊token和加强数据预处理验证,可以有效避免这类问题的发生。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00