Kotlin-AI-Examples项目:基于Kotlin构建网页摘要智能代理实践
2025-06-09 08:35:48作者:凌朦慧Richard
摘要代理技术概述
在现代信息爆炸的时代,能够快速获取网页内容核心信息的能力变得尤为重要。Kotlin-AI-Examples项目中的SummarizerAgent展示了一个结合Kotlin语言与AI技术的智能解决方案,能够自动抓取网页内容并生成简洁摘要。
核心架构设计
该摘要代理采用模块化设计思路,主要包含以下几个关键组件:
- 输入过滤模块:负责识别用户输入中的URL地址
- 内容获取模块:通过HTTP请求获取目标网页的HTML内容
- 预处理模块:清理HTML标签,提取纯文本内容
- 提示工程模块:构造适合大语言模型处理的输入格式
- 摘要生成模块:利用大语言模型生成最终摘要
技术实现详解
1. 环境配置与依赖管理
项目使用了现代化的Kotlin构建工具,通过声明式依赖管理引入必要的库:
@file:DependsOn("ai.ancf.lmos:arc-langchain4j-client:0.120.0")
@file:DependsOn("ai.ancf.lmos:arc-reader-html:0.120.0")
@file:DependsOn("dev.langchain4j:langchain4j-open-ai:1.0.0-beta1")
这些依赖提供了与大语言模型交互的能力和HTML内容解析功能。
2. 大语言模型客户端配置
项目采用OpenAI的GPT-4模型作为摘要生成的核心引擎:
val chatCompleterProvider: (String?) -> ChatCompleter = {
LangChainClient(
languageModel = LangChainConfig(
modelName = "gpt-4",
url = null,
apiKey = openAiApiKey,
credentialId = null,
credentialSecret = null,
), clientBuilder = { config, _ ->
OpenAiChatModel.builder()
.modelName(config.modelName)
.apiKey(config.apiKey)
.build()
}
)
}
3. 代理构建过程
代理的核心构建逻辑采用Kotlin DSL风格,清晰易读:
val agentBuilder = DSLAgents.init(chatCompleterProvider).apply {
define {
agent {
name = agentName
description = "Agent that summarizes web pages."
prompt {
"""
You are a helpful agent.
You help customers by summarizing webpages.
Keep your answer short and concise.
"""
}
filterInput {
val url = extractUrl(inputMessage).firstOrNull()
if (url != null) {
debug("Loading url: $url")
val html = html(url).getOrThrow()
inputMessage = inputMessage.update(
"""
User question: ${inputMessage.content}
The webpage $url contains the following text:
$html
"""
)
}
}
}
}
}
实际应用示例
以下是一个实际使用该代理生成网页摘要的示例:
val articleUrl = "https://blog.jetbrains.com/kotlin/2025/02/kodees-kotlin-roundup-fresh-picks/"
val agent = agentBuilder.getAgentByName(agentName) as ChatAgent? ?: error("Agent not found!")
val conversation = Conversation(User("userOrClientId")) +
UserMessage("Please summarize the following article: $articleUrl")
runBlocking {
agent.execute(conversation).getOrNull()?.transcript?.getOrNull(1)?.content
}
执行结果将返回目标网页的简洁摘要,包含主要内容点和关键信息。
技术优势分析
- 高效性:自动完成从URL识别到摘要生成的全流程
- 可扩展性:模块化设计便于添加新的内容处理逻辑
- 准确性:结合大语言模型的强大理解能力
- 易用性:简洁的API接口,降低使用门槛
进阶应用场景
该技术框架可扩展应用于以下场景:
- 新闻聚合平台的自动摘要生成
- 研究文献的快速内容提取
- 企业知识库的内容索引构建
- 个性化推荐系统的内容预处理
总结
Kotlin-AI-Examples项目中的SummarizerAgent展示了如何将Kotlin语言的现代特性与人工智能技术相结合,构建实用高效的智能摘要工具。其清晰的架构设计和简洁的实现方式,为开发者提供了一个优秀的参考范例,也展现了Kotlin在AI应用开发领域的强大潜力。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355