Kotlin-AI-Examples项目:基于Kotlin构建网页摘要智能代理实践
2025-06-09 22:28:13作者:凌朦慧Richard
摘要代理技术概述
在现代信息爆炸的时代,能够快速获取网页内容核心信息的能力变得尤为重要。Kotlin-AI-Examples项目中的SummarizerAgent展示了一个结合Kotlin语言与AI技术的智能解决方案,能够自动抓取网页内容并生成简洁摘要。
核心架构设计
该摘要代理采用模块化设计思路,主要包含以下几个关键组件:
- 输入过滤模块:负责识别用户输入中的URL地址
- 内容获取模块:通过HTTP请求获取目标网页的HTML内容
- 预处理模块:清理HTML标签,提取纯文本内容
- 提示工程模块:构造适合大语言模型处理的输入格式
- 摘要生成模块:利用大语言模型生成最终摘要
技术实现详解
1. 环境配置与依赖管理
项目使用了现代化的Kotlin构建工具,通过声明式依赖管理引入必要的库:
@file:DependsOn("ai.ancf.lmos:arc-langchain4j-client:0.120.0")
@file:DependsOn("ai.ancf.lmos:arc-reader-html:0.120.0")
@file:DependsOn("dev.langchain4j:langchain4j-open-ai:1.0.0-beta1")
这些依赖提供了与大语言模型交互的能力和HTML内容解析功能。
2. 大语言模型客户端配置
项目采用OpenAI的GPT-4模型作为摘要生成的核心引擎:
val chatCompleterProvider: (String?) -> ChatCompleter = {
LangChainClient(
languageModel = LangChainConfig(
modelName = "gpt-4",
url = null,
apiKey = openAiApiKey,
credentialId = null,
credentialSecret = null,
), clientBuilder = { config, _ ->
OpenAiChatModel.builder()
.modelName(config.modelName)
.apiKey(config.apiKey)
.build()
}
)
}
3. 代理构建过程
代理的核心构建逻辑采用Kotlin DSL风格,清晰易读:
val agentBuilder = DSLAgents.init(chatCompleterProvider).apply {
define {
agent {
name = agentName
description = "Agent that summarizes web pages."
prompt {
"""
You are a helpful agent.
You help customers by summarizing webpages.
Keep your answer short and concise.
"""
}
filterInput {
val url = extractUrl(inputMessage).firstOrNull()
if (url != null) {
debug("Loading url: $url")
val html = html(url).getOrThrow()
inputMessage = inputMessage.update(
"""
User question: ${inputMessage.content}
The webpage $url contains the following text:
$html
"""
)
}
}
}
}
}
实际应用示例
以下是一个实际使用该代理生成网页摘要的示例:
val articleUrl = "https://blog.jetbrains.com/kotlin/2025/02/kodees-kotlin-roundup-fresh-picks/"
val agent = agentBuilder.getAgentByName(agentName) as ChatAgent? ?: error("Agent not found!")
val conversation = Conversation(User("userOrClientId")) +
UserMessage("Please summarize the following article: $articleUrl")
runBlocking {
agent.execute(conversation).getOrNull()?.transcript?.getOrNull(1)?.content
}
执行结果将返回目标网页的简洁摘要,包含主要内容点和关键信息。
技术优势分析
- 高效性:自动完成从URL识别到摘要生成的全流程
- 可扩展性:模块化设计便于添加新的内容处理逻辑
- 准确性:结合大语言模型的强大理解能力
- 易用性:简洁的API接口,降低使用门槛
进阶应用场景
该技术框架可扩展应用于以下场景:
- 新闻聚合平台的自动摘要生成
- 研究文献的快速内容提取
- 企业知识库的内容索引构建
- 个性化推荐系统的内容预处理
总结
Kotlin-AI-Examples项目中的SummarizerAgent展示了如何将Kotlin语言的现代特性与人工智能技术相结合,构建实用高效的智能摘要工具。其清晰的架构设计和简洁的实现方式,为开发者提供了一个优秀的参考范例,也展现了Kotlin在AI应用开发领域的强大潜力。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C093
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19