Ragas项目中ResponseRelevancy指标使用问题解析
在Ragas项目的最新版本(0.2.7)中,开发者在使用ResponseRelevancy指标进行RAG系统评估时可能会遇到一个类型错误问题。本文将深入分析该问题的原因,并提供完整的解决方案。
问题现象
当开发者尝试使用ResponseRelevancy指标评估单个问答样本时,系统会抛出ValueError异常,提示"Argument 'prompts' is expected to be of type List[str]"。这个错误表明在内部处理过程中,prompt参数的类型与预期不符。
根本原因分析
经过深入调查,我们发现这个问题主要由两个因素导致:
-
LLM包装器缺失:ResponseRelevancy指标需要显式传入一个经过LangchainLLMWrapper包装的LLM实例,而不能直接使用原生LLM。
-
嵌入模型缺失:该指标不仅需要LLM,还需要一个嵌入模型(embeddings)来计算文本相似度。
完整解决方案
要正确使用ResponseRelevancy指标,需要按照以下步骤配置:
from ragas import SingleTurnSample
from ragas.metrics import ResponseRelevancy
from ragas.llms import LangchainLLMWrapper
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain_openai import ChatOpenAI
# 正确配置评估组件
evaluator_llm = LangchainLLMWrapper(ChatOpenAI(model="gpt-4"))
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
# 准备评估样本
sample = SingleTurnSample(
user_input="When was the first super bowl?",
response="The first superbowl was held on Jan 15, 1967",
retrieved_contexts=[
"The First AFL–NFL World Championship Game was an American football game played on January 15, 1967, at the Los Angeles Memorial Coliseum in Los Angeles."
]
)
# 初始化评估器
scorer = ResponseRelevancy(llm=evaluator_llm, embeddings=embeddings)
# 执行评估
await scorer.single_turn_ascore(sample)
技术要点说明
-
LangchainLLMWrapper的作用:这个包装器将Langchain的LLM适配为Ragas可以使用的格式,解决了类型不匹配的问题。
-
嵌入模型的选择:虽然示例中使用了OpenAI的嵌入模型,但理论上任何兼容的嵌入模型都可以使用,只要其接口与Ragas的要求匹配。
-
异步评估模式:注意需要使用await关键字调用评估方法,因为Ragas的评估过程是异步执行的。
最佳实践建议
-
对于生产环境,建议使用更稳定的模型版本,而不是示例中的"gpt-4"和"text-embedding-3-small"。
-
可以考虑将评估组件配置封装为工厂方法,便于在项目中复用。
-
对于批量评估,Ragas提供了更高效的批量处理方法,可以显著提升评估效率。
通过以上分析和解决方案,开发者应该能够顺利使用Ragas的ResponseRelevancy指标来评估RAG系统的回答相关性。这个指标对于衡量系统生成回答与用户问题的匹配程度非常有用,是RAG系统评估中不可或缺的一部分。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00