Ragas项目中ResponseRelevancy指标使用问题解析
在Ragas项目的最新版本(0.2.7)中,开发者在使用ResponseRelevancy指标进行RAG系统评估时可能会遇到一个类型错误问题。本文将深入分析该问题的原因,并提供完整的解决方案。
问题现象
当开发者尝试使用ResponseRelevancy指标评估单个问答样本时,系统会抛出ValueError异常,提示"Argument 'prompts' is expected to be of type List[str]"。这个错误表明在内部处理过程中,prompt参数的类型与预期不符。
根本原因分析
经过深入调查,我们发现这个问题主要由两个因素导致:
-
LLM包装器缺失:ResponseRelevancy指标需要显式传入一个经过LangchainLLMWrapper包装的LLM实例,而不能直接使用原生LLM。
-
嵌入模型缺失:该指标不仅需要LLM,还需要一个嵌入模型(embeddings)来计算文本相似度。
完整解决方案
要正确使用ResponseRelevancy指标,需要按照以下步骤配置:
from ragas import SingleTurnSample
from ragas.metrics import ResponseRelevancy
from ragas.llms import LangchainLLMWrapper
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain_openai import ChatOpenAI
# 正确配置评估组件
evaluator_llm = LangchainLLMWrapper(ChatOpenAI(model="gpt-4"))
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
# 准备评估样本
sample = SingleTurnSample(
user_input="When was the first super bowl?",
response="The first superbowl was held on Jan 15, 1967",
retrieved_contexts=[
"The First AFL–NFL World Championship Game was an American football game played on January 15, 1967, at the Los Angeles Memorial Coliseum in Los Angeles."
]
)
# 初始化评估器
scorer = ResponseRelevancy(llm=evaluator_llm, embeddings=embeddings)
# 执行评估
await scorer.single_turn_ascore(sample)
技术要点说明
-
LangchainLLMWrapper的作用:这个包装器将Langchain的LLM适配为Ragas可以使用的格式,解决了类型不匹配的问题。
-
嵌入模型的选择:虽然示例中使用了OpenAI的嵌入模型,但理论上任何兼容的嵌入模型都可以使用,只要其接口与Ragas的要求匹配。
-
异步评估模式:注意需要使用await关键字调用评估方法,因为Ragas的评估过程是异步执行的。
最佳实践建议
-
对于生产环境,建议使用更稳定的模型版本,而不是示例中的"gpt-4"和"text-embedding-3-small"。
-
可以考虑将评估组件配置封装为工厂方法,便于在项目中复用。
-
对于批量评估,Ragas提供了更高效的批量处理方法,可以显著提升评估效率。
通过以上分析和解决方案,开发者应该能够顺利使用Ragas的ResponseRelevancy指标来评估RAG系统的回答相关性。这个指标对于衡量系统生成回答与用户问题的匹配程度非常有用,是RAG系统评估中不可或缺的一部分。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00