SolidQueue 中 ActiveStorage::AnalyzeJob 卡住问题的分析与解决
问题现象
在使用 SolidQueue 作为 ActiveJob 后端时,许多开发者报告 ActiveStorage::AnalyzeJob 会出现卡住不执行的情况。具体表现为:
- 作业被正确入队到 default 队列
- 作业状态显示为"in_progress"(已被 worker 获取)
- 但作业永远不会完成,一直处于挂起状态
- 其他类型的作业在相同队列中能正常执行
这个问题在 macOS 系统上尤为常见,特别是 M1/M2/M3 芯片的 Mac 设备,但在 Intel Mac 和 Windows 系统上也有报告。
根本原因分析
经过开发者社区的深入调查,发现问题根源在于 macOS 系统的安全机制与 Ruby 进程分叉(fork)的兼容性问题。
当 SolidQueue 的 worker 进程尝试 fork 子进程来处理作业时,macOS 的 Objective-C 运行时会触发安全机制,阻止某些初始化操作在 fork 后的子进程中执行。这导致 ActiveStorage 的分析过程无法正常完成。
解决方案
目前有以下几种解决方案:
-
环境变量方案(推荐) 在启动应用前设置环境变量:
export OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES或者直接在启动命令中加入:
OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES bin/dev -
配置调整方案 对于开发环境,可以尝试调整 SolidQueue 的配置,增加 worker 的 polling_interval:
development: workers: - polling_interval: 1 -
数据库连接池调整 确保数据库连接池大小足够:
default: &default pool: <%= ENV.fetch("RAILS_MAX_THREADS") { 5 } %>
技术背景
这个问题实际上是一个长期存在的 macOS 系统特性导致的。自 macOS High Sierra (10.13) 开始,系统引入了更严格的进程初始化安全检查机制。当 Ruby 应用服务器(如 Puma)使用 fork 模式时,就会触发这个安全机制。
ActiveStorage::AnalyzeJob 特别容易受到影响,因为它通常需要加载图像处理库(如 ImageMagick 或 libvips),这些库在初始化时可能会使用 Objective-C 运行时。
安全性考量
开发者可能会担心禁用这个安全检查是否安全。根据长期社区实践和相关技术分析,在生产环境中设置 OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES 是安全的,因为:
- 这个检查主要是针对 Objective-C 应用的防御机制
- Ruby 应用通常不依赖 Objective-C 的初始化过程
- 该环境变量已被 Ruby 社区广泛使用多年,没有报告安全问题
最佳实践建议
- 在开发环境中使用环境变量解决方案
- 在生产环境中考虑使用线程模式而非 fork 模式
- 定期检查 SolidQueue 和 Rails 的更新,未来版本可能会内置解决方案
- 对于关键业务,考虑实现作业超时机制,防止长时间挂起
通过以上分析和解决方案,开发者应该能够顺利解决 SolidQueue 中 ActiveStorage 分析作业卡住的问题,确保文件上传和分析功能正常工作。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00