SolidQueue 中 ActiveStorage::AnalyzeJob 卡住问题的分析与解决
问题现象
在使用 SolidQueue 作为 ActiveJob 后端时,许多开发者报告 ActiveStorage::AnalyzeJob 会出现卡住不执行的情况。具体表现为:
- 作业被正确入队到 default 队列
- 作业状态显示为"in_progress"(已被 worker 获取)
- 但作业永远不会完成,一直处于挂起状态
- 其他类型的作业在相同队列中能正常执行
这个问题在 macOS 系统上尤为常见,特别是 M1/M2/M3 芯片的 Mac 设备,但在 Intel Mac 和 Windows 系统上也有报告。
根本原因分析
经过开发者社区的深入调查,发现问题根源在于 macOS 系统的安全机制与 Ruby 进程分叉(fork)的兼容性问题。
当 SolidQueue 的 worker 进程尝试 fork 子进程来处理作业时,macOS 的 Objective-C 运行时会触发安全机制,阻止某些初始化操作在 fork 后的子进程中执行。这导致 ActiveStorage 的分析过程无法正常完成。
解决方案
目前有以下几种解决方案:
-
环境变量方案(推荐) 在启动应用前设置环境变量:
export OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES或者直接在启动命令中加入:
OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES bin/dev -
配置调整方案 对于开发环境,可以尝试调整 SolidQueue 的配置,增加 worker 的 polling_interval:
development: workers: - polling_interval: 1 -
数据库连接池调整 确保数据库连接池大小足够:
default: &default pool: <%= ENV.fetch("RAILS_MAX_THREADS") { 5 } %>
技术背景
这个问题实际上是一个长期存在的 macOS 系统特性导致的。自 macOS High Sierra (10.13) 开始,系统引入了更严格的进程初始化安全检查机制。当 Ruby 应用服务器(如 Puma)使用 fork 模式时,就会触发这个安全机制。
ActiveStorage::AnalyzeJob 特别容易受到影响,因为它通常需要加载图像处理库(如 ImageMagick 或 libvips),这些库在初始化时可能会使用 Objective-C 运行时。
安全性考量
开发者可能会担心禁用这个安全检查是否安全。根据长期社区实践和相关技术分析,在生产环境中设置 OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES 是安全的,因为:
- 这个检查主要是针对 Objective-C 应用的防御机制
- Ruby 应用通常不依赖 Objective-C 的初始化过程
- 该环境变量已被 Ruby 社区广泛使用多年,没有报告安全问题
最佳实践建议
- 在开发环境中使用环境变量解决方案
- 在生产环境中考虑使用线程模式而非 fork 模式
- 定期检查 SolidQueue 和 Rails 的更新,未来版本可能会内置解决方案
- 对于关键业务,考虑实现作业超时机制,防止长时间挂起
通过以上分析和解决方案,开发者应该能够顺利解决 SolidQueue 中 ActiveStorage 分析作业卡住的问题,确保文件上传和分析功能正常工作。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00