Keras3 1.4.0版本发布:全面增强张量操作与深度学习功能
Keras3是R语言生态中一个强大的深度学习框架,它作为R与Keras深度学习库之间的桥梁,让R用户能够便捷地构建和训练神经网络模型。最新发布的1.4.0版本带来了多项重要更新,特别是在张量操作、索引功能以及模型构建方面有了显著改进。
张量操作与索引功能的重大增强
本次更新最引人注目的是对张量操作和索引功能的全面增强。新引入的op_subset()函数和x@r[...]方法让R用户可以像操作普通R向量和矩阵那样对张量进行子集选择。这种设计极大地降低了学习成本,让熟悉R语法的用户能够更自然地处理张量数据。
更令人兴奋的是,1.4.0版本还实现了张量的子集赋值功能。现在,用户可以直接使用op_subset(x, ...) <- value或x@r[...] <- value这样的语法来修改张量的部分内容。这种直观的操作方式大大简化了张量处理流程。
为了满足不同用户的需求,Keras3 1.4.0还新增了x@py[...]访问器,专门为习惯Python风格0基索引的用户提供支持。这种设计体现了框架对多语言背景用户的考虑。
索引语义的重大调整
1.4.0版本对多个返回或使用索引的操作函数进行了重大调整,统一将默认行为改为返回1基索引。这一变化影响了许多常用函数,包括op_argmax()、op_argmin()、op_top_k()等。这种调整使得Keras3更加符合R语言的惯例,减少了用户在R和Python索引习惯之间切换的认知负担。
特别值得一提的是op_arange()函数现在完全匹配R的base::seq()函数语义。它会自动推断步长方向,默认包含结束值,这些改进让函数行为更加符合R用户的预期。
新增张量操作与预处理功能
1.4.0版本引入了多个实用的新操作函数:
op_rot90():实现张量的90度旋转op_rearrange():支持Einops风格的张量重排op_signbit()和op_polar():新增的数学运算op_image_perspective_transform()和op_image_gaussian_blur():图像处理专用操作
在预处理方面,application_decode_predictions()现在默认返回处理后的数据框,而application_preprocess_inputs()在输入缺失时会返回预处理器函数,这些改进使得模型预测结果的后续处理更加便捷。
新增层类型与模型构建增强
1.4.0版本引入了多种新的神经网络层类型,丰富了模型构建的选择:
layer_rms_normalization():RMS归一化层layer_aug_mix()和layer_cut_mix():数据增强层- 多种随机变换层,如
layer_random_invert()、layer_random_erasing()等
在模型构建方面,layer_resizing()新增了antialias参数,keras_input()、keras_model_sequential()等函数增加了ragged参数支持。layer$pop_layer()方法现在可以返回被移除的层,并新增了rebuild参数控制是否重建模型。
其他重要改进
1.4.0版本还包含多项细节优化:
KERAS_HOME现在默认设置为tools::R_user_dir("keras3", "cache"),提高了跨平台兼容性- 新增
op_convert_to_array()函数,方便将张量转换为R数组 - 修复了
op_shape()可能返回TensorFlowTensorShape的问题 - 解决了
metric_iou()等函数处理R原子双精度数时的问题
这些改进共同提升了Keras3的稳定性、易用性和与R生态的融合度,为R语言用户在深度学习领域提供了更加强大和便捷的工具。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00