Keras3 1.4.0版本发布:全面增强张量操作与深度学习功能
Keras3是R语言生态中一个强大的深度学习框架,它作为R与Keras深度学习库之间的桥梁,让R用户能够便捷地构建和训练神经网络模型。最新发布的1.4.0版本带来了多项重要更新,特别是在张量操作、索引功能以及模型构建方面有了显著改进。
张量操作与索引功能的重大增强
本次更新最引人注目的是对张量操作和索引功能的全面增强。新引入的op_subset()函数和x@r[...]方法让R用户可以像操作普通R向量和矩阵那样对张量进行子集选择。这种设计极大地降低了学习成本,让熟悉R语法的用户能够更自然地处理张量数据。
更令人兴奋的是,1.4.0版本还实现了张量的子集赋值功能。现在,用户可以直接使用op_subset(x, ...) <- value或x@r[...] <- value这样的语法来修改张量的部分内容。这种直观的操作方式大大简化了张量处理流程。
为了满足不同用户的需求,Keras3 1.4.0还新增了x@py[...]访问器,专门为习惯Python风格0基索引的用户提供支持。这种设计体现了框架对多语言背景用户的考虑。
索引语义的重大调整
1.4.0版本对多个返回或使用索引的操作函数进行了重大调整,统一将默认行为改为返回1基索引。这一变化影响了许多常用函数,包括op_argmax()、op_argmin()、op_top_k()等。这种调整使得Keras3更加符合R语言的惯例,减少了用户在R和Python索引习惯之间切换的认知负担。
特别值得一提的是op_arange()函数现在完全匹配R的base::seq()函数语义。它会自动推断步长方向,默认包含结束值,这些改进让函数行为更加符合R用户的预期。
新增张量操作与预处理功能
1.4.0版本引入了多个实用的新操作函数:
op_rot90():实现张量的90度旋转op_rearrange():支持Einops风格的张量重排op_signbit()和op_polar():新增的数学运算op_image_perspective_transform()和op_image_gaussian_blur():图像处理专用操作
在预处理方面,application_decode_predictions()现在默认返回处理后的数据框,而application_preprocess_inputs()在输入缺失时会返回预处理器函数,这些改进使得模型预测结果的后续处理更加便捷。
新增层类型与模型构建增强
1.4.0版本引入了多种新的神经网络层类型,丰富了模型构建的选择:
layer_rms_normalization():RMS归一化层layer_aug_mix()和layer_cut_mix():数据增强层- 多种随机变换层,如
layer_random_invert()、layer_random_erasing()等
在模型构建方面,layer_resizing()新增了antialias参数,keras_input()、keras_model_sequential()等函数增加了ragged参数支持。layer$pop_layer()方法现在可以返回被移除的层,并新增了rebuild参数控制是否重建模型。
其他重要改进
1.4.0版本还包含多项细节优化:
KERAS_HOME现在默认设置为tools::R_user_dir("keras3", "cache"),提高了跨平台兼容性- 新增
op_convert_to_array()函数,方便将张量转换为R数组 - 修复了
op_shape()可能返回TensorFlowTensorShape的问题 - 解决了
metric_iou()等函数处理R原子双精度数时的问题
这些改进共同提升了Keras3的稳定性、易用性和与R生态的融合度,为R语言用户在深度学习领域提供了更加强大和便捷的工具。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00