Muse LSL 项目使用教程
1. 项目介绍
Muse LSL 是一个用于从 InteraXon 开发的 Muse 设备(如 Muse 2、Muse S 和 Muse 2016)流式传输、可视化和记录 EEG 数据的 Python 包。该项目支持 Python 2.7 和 Python 3.x,并且可以通过多种蓝牙后端(如 bleak、BlueMuse 和 bgapi)连接到 Muse 设备。Muse LSL 不仅支持 EEG 数据,还支持从 Muse 2 设备获取的加速度计、陀螺仪和光电容积描记(PPG)数据。
2. 项目快速启动
安装
首先,使用 pip 安装 Muse LSL:
pip install muselsl
设置流式传输
在 Windows 10 上,推荐使用 BlueMuse GUI 来设置 LSL 流。在 Mac 和 Linux 上,可以直接从命令行使用 Muse LSL。
列出可用 Muse 设备
muselsl list
开始 LSL 流
从第一个可用的 Muse 设备开始流式传输:
muselsl stream
如果要连接到特定的 Muse 设备,可以通过设备名称或 MAC 地址进行连接:
muselsl stream --name YOUR_DEVICE_NAME
muselsl stream --address YOUR_DEVICE_ADDRESS
查看流式数据
在另一个终端或进程中,使用以下命令查看数据:
muselsl view
如果可视化冻结或延迟,可以尝试使用版本 2 的查看器:
muselsl view --version 2
记录 EEG 数据
将 EEG 数据记录到 CSV 文件中:
muselsl record --duration 60
3. 应用案例和最佳实践
实验运行
Muse LSL 设计用于运行多种经典的 EEG 实验,如 P300 事件相关电位、SSVEP 和 SSAEP 诱发电位。这些实验的代码可以在 EEG Notebooks 仓库中找到,由 NeuroTechX 社区维护。
作为库使用
如果你想将 Muse LSL 集成到自己的 Python 项目中,可以将其作为库导入并使用其功能。例如:
from muselsl import stream, list_muses
muses = list_muses()
stream(muses[0]['address'])
print('Stream has ended')
4. 典型生态项目
EEG Notebooks
EEG Notebooks 是一个由 NeuroTechX 社区维护的项目,提供了多种 EEG 实验的代码,包括 P300、SSVEP 和 SSAEP 等。这些实验可以与 Muse LSL 结合使用,以进行更复杂的 EEG 研究。
BlueMuse
BlueMuse 是一个用于在 Windows 上发现和连接 Muse 设备的 GUI 工具。它可以帮助用户更方便地设置和管理 Muse 设备的连接。
LSL (Lab Streaming Layer)
LSL 是一个用于统一收集时间序列数据的系统,广泛用于 EEG 和脑机接口研究。Muse LSL 使用 LSL 来流式传输和同步数据,使其成为 EEG 研究中的标准工具。
通过这些生态项目,Muse LSL 可以与其他工具和平台无缝集成,提供更强大的功能和更广泛的应用场景。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C093
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00