Muse LSL 项目使用教程
1. 项目介绍
Muse LSL 是一个用于从 InteraXon 开发的 Muse 设备(如 Muse 2、Muse S 和 Muse 2016)流式传输、可视化和记录 EEG 数据的 Python 包。该项目支持 Python 2.7 和 Python 3.x,并且可以通过多种蓝牙后端(如 bleak、BlueMuse 和 bgapi)连接到 Muse 设备。Muse LSL 不仅支持 EEG 数据,还支持从 Muse 2 设备获取的加速度计、陀螺仪和光电容积描记(PPG)数据。
2. 项目快速启动
安装
首先,使用 pip 安装 Muse LSL:
pip install muselsl
设置流式传输
在 Windows 10 上,推荐使用 BlueMuse GUI 来设置 LSL 流。在 Mac 和 Linux 上,可以直接从命令行使用 Muse LSL。
列出可用 Muse 设备
muselsl list
开始 LSL 流
从第一个可用的 Muse 设备开始流式传输:
muselsl stream
如果要连接到特定的 Muse 设备,可以通过设备名称或 MAC 地址进行连接:
muselsl stream --name YOUR_DEVICE_NAME
muselsl stream --address YOUR_DEVICE_ADDRESS
查看流式数据
在另一个终端或进程中,使用以下命令查看数据:
muselsl view
如果可视化冻结或延迟,可以尝试使用版本 2 的查看器:
muselsl view --version 2
记录 EEG 数据
将 EEG 数据记录到 CSV 文件中:
muselsl record --duration 60
3. 应用案例和最佳实践
实验运行
Muse LSL 设计用于运行多种经典的 EEG 实验,如 P300 事件相关电位、SSVEP 和 SSAEP 诱发电位。这些实验的代码可以在 EEG Notebooks 仓库中找到,由 NeuroTechX 社区维护。
作为库使用
如果你想将 Muse LSL 集成到自己的 Python 项目中,可以将其作为库导入并使用其功能。例如:
from muselsl import stream, list_muses
muses = list_muses()
stream(muses[0]['address'])
print('Stream has ended')
4. 典型生态项目
EEG Notebooks
EEG Notebooks 是一个由 NeuroTechX 社区维护的项目,提供了多种 EEG 实验的代码,包括 P300、SSVEP 和 SSAEP 等。这些实验可以与 Muse LSL 结合使用,以进行更复杂的 EEG 研究。
BlueMuse
BlueMuse 是一个用于在 Windows 上发现和连接 Muse 设备的 GUI 工具。它可以帮助用户更方便地设置和管理 Muse 设备的连接。
LSL (Lab Streaming Layer)
LSL 是一个用于统一收集时间序列数据的系统,广泛用于 EEG 和脑机接口研究。Muse LSL 使用 LSL 来流式传输和同步数据,使其成为 EEG 研究中的标准工具。
通过这些生态项目,Muse LSL 可以与其他工具和平台无缝集成,提供更强大的功能和更广泛的应用场景。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00