ExLlamaV2项目加载Qwen/Smaug大模型的内存优化分析
内存分配问题现象
在使用ExLlamaV2项目加载5位量化版本的Qwen/Smaug大语言模型时,用户报告遇到了显存分配异常问题。具体表现为:在模型加载的最后阶段,系统会突然向GPU1显存中注入大量数据,而此时GPU2和GPU3仍有充足可用显存。该问题在3位量化版本中同样存在。
问题诊断与解决方案
经过技术分析,发现这是由于Qwen系列模型未采用分组查询注意力(GQA)机制导致的固有特性。与采用GQA的Llama2-70B模型相比,Qwen模型的上下文处理效率显著较低:
- Llama2-70B每token仅需320KB显存
- Qwen模型每token需要2.5MB显存
对于3位量化版本,实际测试显示在设置max_seq_len为8192时,三块NVIDIA 4090显卡的最终显存分配分别为:
- GPU1: 19320MB
- GPU2: 22900MB
- GPU3: 10990MB
性能优化建议
针对这一内存特性,我们给出以下优化建议:
-
量化位宽选择:优先考虑3位或4位量化版本,这些版本在保持较好模型性能的同时,显存需求相对可控。
-
上下文长度调整:根据实际应用场景需求,适当降低max_seq_len参数值。例如将上下文长度从默认值降低到8192甚至更低。
-
显存分配策略:通过手动设置GPU分配比例来平衡各卡负载。例如使用{10,14,23}这样的分配比例可能比默认分配更有效。
模型特性深入分析
Qwen/Smaug模型在tokenizer实现上也存在一些独特特性,这会影响实际使用体验:
-
多token字符编码:某些字符(特别是emoji表情和中文)需要组合多个token才能完整表示,这会导致生成速度出现间歇性下降。
-
解码效率问题:当前实现需要依赖HuggingFace的tokenizer来处理无法直接映射为Unicode字符串的情况,这一过程会引入显著延迟。
-
上下文成本:该模型在处理长上下文时显存需求极高,4096token上下文需要约10GB显存,完整32k上下文则需要高达80GB显存。
未来优化方向
从技术角度看,可能的优化方向包括:
- 采用Tiktoken库替代当前低效的tokenizer实现
- 等待模型开发者引入GQA等现代注意力机制
- 进一步优化量化算法,降低显存占用
对于拥有3块24GB显存显卡的用户,目前可能更适合考虑使用MiquLiz等优化更好的120B参数模型,它们在相同量化位宽和上下文长度下通常能提供更好的性能表现。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00