cudf-polars项目中的多分区group_by聚合优化
2025-05-26 23:11:32作者:温艾琴Wonderful
在数据分析领域,分组聚合操作是最基础也是最常用的功能之一。本文将深入探讨cudf-polars项目中对多分区group_by操作中min/max聚合函数的支持优化。
背景与挑战
cudf-polars作为连接RAPIDS生态与Polars生态的桥梁,需要高效实现Polars API在GPU上的运算。其中,group_by操作后接min/max聚合函数是数据分析中常见的模式,特别是在处理TPC-H基准测试中的查询2时,这种操作模式尤为关键。
传统实现中,单分区情况下的group_by min/max已经得到良好支持,但当数据分布在多个分区时(如在多GPU环境下),现有的实现尚不完善。这限制了系统在大规模数据集上的扩展能力。
技术实现方案
针对这一技术挑战,项目团队参考了cudf-polars-multi-combined中的实现思路。该方案的核心在于:
- 分区感知的聚合计算:系统首先在每个分区内独立计算局部min/max值
- 跨分区结果合并:然后将各分区的中间结果进行合并,得到全局的min/max值
- 内存高效处理:整个过程保持对GPU内存的高效利用,避免不必要的数据移动
这种实现方式与分布式计算中的map-reduce模式有相似之处,但针对GPU计算环境进行了专门优化。
实现细节
具体实现上,开发者需要关注以下几个关键点:
- API兼容性:确保实现与Polars原生API保持完全兼容
- 多GPU支持:设计能够跨多个GPU设备工作的聚合算法
- 性能优化:利用CUDA核心进行并行计算,最大化硬件利用率
- 内存管理:合理控制中间结果的存储,避免内存溢出
应用价值
这一优化带来的直接好处包括:
- 性能提升:多GPU环境下处理大规模数据时,性能可得到线性扩展
- 功能完善:完整支持TPC-H等标准测试集中的关键查询
- 用户体验:开发者可以无缝使用熟悉的Polars API,同时享受GPU加速
未来展望
随着这一功能的实现,cudf-polars在多GPU环境下的能力将得到显著增强。未来可以在此基础上进一步优化其他聚合函数,如median、quantile等,构建更完整的高性能数据分析生态系统。
这一技术演进不仅提升了单个项目的功能完整性,也为GPU加速的数据分析领域树立了新的标杆,展示了如何将不同生态系统的优势有机结合。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
661