在CARLA仿真平台中替换车辆模型的技术实践
概述
在自动驾驶仿真平台CARLA中,替换默认车辆模型是常见的定制化需求。本文将详细介绍如何将自定义3D模型导入CARLA并替换原有车辆,同时保持原有的物理特性和行为逻辑。
模型准备阶段
首先需要准备符合CARLA要求的3D模型文件。虽然CARLA官方文档提供了从零开始创建车辆模型的教程,但实际项目中更常见的是使用已有的3D模型进行替换。
对于从SolidWorks等CAD软件导出的模型,需要经过3D Max等中间软件转换为FBX格式。需要注意的是,即使替换的是无人船等特殊载具,CARLA目前仍需要保留车轮骨骼结构,这是仿真系统实现运动控制的基础。
模型导入与配置
-
FBX文件处理:将准备好的FBX文件按照CARLA文档要求进行处理,确保包含必要的骨骼结构。对于无人船等非轮式载具,仍需保留四个车轮骨骼作为运动控制点。
-
蓝图配置:在CARLA的Vehicle_Factory蓝图中,可以删除所有默认车辆配置,仅保留自定义模型。这样可以确保场景中只生成指定类型的载具。
-
物理特性保留:替换模型时,原有的物理参数如质量、惯性等会自动继承,无需额外调整。如需修改物理特性,需在Unreal Engine中调整对应的物理资产。
场景应用技巧
在实际测试中,特别是使用Leaderboard等评估系统时,需要确保所有交通参与者都使用自定义模型。可以通过以下方法实现:
-
蓝图过滤:修改场景生成逻辑,过滤掉所有非目标模型的载具。
-
批量替换:对于已存在的场景,可以通过遍历所有车辆actor并替换为自定义模型的方式实现全局更新。
特殊问题处理
在替换过程中可能会遇到以下典型问题:
-
交通信号灯显示问题:即使将交通灯模型移至地下,其逻辑可能仍然生效。正确的做法是修改地图的交通信号蓝图而非简单移动模型位置。
-
模型碰撞问题:对于非标准载具,需要特别注意碰撞体的设置,确保与可视模型匹配,避免出现穿模或异常物理交互。
-
性能优化:复杂模型可能导致性能下降,建议在导入前对模型进行合理的LOD(细节层次)优化。
总结
CARLA提供了灵活的模型替换机制,使研究人员能够快速验证不同形态载具的自动驾驶算法。通过合理的模型处理和配置调整,可以实现从常规车辆到特殊载具的无缝替换,为自动驾驶研究提供更多可能性。在实际操作中,建议先在简单场景测试模型替换效果,确认无误后再应用于复杂评估场景。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C059
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00