TensorRT-Model-Optimizer 0.31.0版本发布:分布式检查点优化与量化功能升级
TensorRT-Model-Optimizer(简称ModelOpt)是NVIDIA推出的一个专注于深度学习模型优化的开源工具库,它提供了从模型量化、剪枝到部署优化等一系列功能。最新发布的0.31.0版本带来了多项重要更新,特别是在分布式训练检查点和量化功能方面进行了显著改进。
分布式检查点格式的重大变更
0.31.0版本对分布式检查点(torch-dist)的存储格式进行了重要重构,这些变更主要影响使用NeMo和Megatron-LM框架的用户:
-
量化状态存储位置调整:TensorQuantizer的quantizer_state现在存储在QuantModule的extra_state中,而之前是保存在分片的modelopt_state中。这一变化使得量化状态的存储更加合理和统一。
-
数据类型和形状保留:分布式检查点中amax和pre_quant_scale的数据类型和形状现在会被完整保留。在之前的版本中,为了确保所有解码器层在检查点中具有统一结构,某些数据类型和形状会被修改。
-
异构格式支持:与megatron.core-0.13配合使用时,量化模型现在能够以异构格式存储和恢复分布式检查点,这为模型结构提供了更大的灵活性。
对于使用旧版本检查点的用户,需要先使用0.29版本加载旧格式的分布式检查点,将其转换为torch格式,然后再用0.31版本转换为新格式。
量化功能增强
本次更新对量化功能进行了多项改进:
-
auto_quantize API重构:现在接受量化配置字典列表作为量化选项,而之前仅支持预定义量化格式名称的字符串列表。这一变化为用户提供了更大的灵活性,可以轻松使用自定义量化格式。
-
量化格式选项调整:quantization_formats不再包含None(表示"不量化")作为有效选项,因为auto_quantize内部始终会添加"不量化"作为默认选项。
-
模型导出配置重构:量化配置现在保存在config.json中,原有的hf_quant_config.json将被弃用。
新功能与模型支持
0.31.0版本引入了多项新功能:
-
TensorRT-LLM 0.19支持:LLM示例已升级至最新版TensorRT-LLM,提供了更好的性能和兼容性。
-
新增模型支持:llm_ptq示例现在支持Qwen3 MoE模型,扩展了可优化的模型范围。
-
高级量化算法支持:ModelOpt现在支持AWQ、SVDQuant和SmoothQuant等先进量化算法,特别针对CPU卸载的Huggingface模型进行了优化。
-
AutoCast工具:新增的AutoCast工具可以将ONNX模型转换为FP16或BF16格式,方便在不同硬件平台上部署。
-
低内存模式:llm_ptq示例新增了--low_memory_mode标志,支持使用压缩权重初始化HF模型,显著降低了PTQ和量化检查点导出的峰值内存需求。
兼容性调整
0.31.0版本停止了对Python 3.9的支持,建议用户升级到更高版本的Python环境以获得更好的性能和功能支持。
总结
TensorRT-Model-Optimizer 0.31.0版本在分布式训练检查点、量化功能和模型支持方面都做出了重要改进,特别是对大型语言模型的支持更加完善。这些更新不仅提高了工具的灵活性和易用性,也为模型优化和部署提供了更多可能性。对于深度学习工程师和研究人员来说,升级到新版本将能够获得更高效的模型优化体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00