TensorRT-Model-Optimizer 0.31.0版本发布:分布式检查点优化与量化功能升级
TensorRT-Model-Optimizer(简称ModelOpt)是NVIDIA推出的一个专注于深度学习模型优化的开源工具库,它提供了从模型量化、剪枝到部署优化等一系列功能。最新发布的0.31.0版本带来了多项重要更新,特别是在分布式训练检查点和量化功能方面进行了显著改进。
分布式检查点格式的重大变更
0.31.0版本对分布式检查点(torch-dist)的存储格式进行了重要重构,这些变更主要影响使用NeMo和Megatron-LM框架的用户:
-
量化状态存储位置调整:TensorQuantizer的quantizer_state现在存储在QuantModule的extra_state中,而之前是保存在分片的modelopt_state中。这一变化使得量化状态的存储更加合理和统一。
-
数据类型和形状保留:分布式检查点中amax和pre_quant_scale的数据类型和形状现在会被完整保留。在之前的版本中,为了确保所有解码器层在检查点中具有统一结构,某些数据类型和形状会被修改。
-
异构格式支持:与megatron.core-0.13配合使用时,量化模型现在能够以异构格式存储和恢复分布式检查点,这为模型结构提供了更大的灵活性。
对于使用旧版本检查点的用户,需要先使用0.29版本加载旧格式的分布式检查点,将其转换为torch格式,然后再用0.31版本转换为新格式。
量化功能增强
本次更新对量化功能进行了多项改进:
-
auto_quantize API重构:现在接受量化配置字典列表作为量化选项,而之前仅支持预定义量化格式名称的字符串列表。这一变化为用户提供了更大的灵活性,可以轻松使用自定义量化格式。
-
量化格式选项调整:quantization_formats不再包含None(表示"不量化")作为有效选项,因为auto_quantize内部始终会添加"不量化"作为默认选项。
-
模型导出配置重构:量化配置现在保存在config.json中,原有的hf_quant_config.json将被弃用。
新功能与模型支持
0.31.0版本引入了多项新功能:
-
TensorRT-LLM 0.19支持:LLM示例已升级至最新版TensorRT-LLM,提供了更好的性能和兼容性。
-
新增模型支持:llm_ptq示例现在支持Qwen3 MoE模型,扩展了可优化的模型范围。
-
高级量化算法支持:ModelOpt现在支持AWQ、SVDQuant和SmoothQuant等先进量化算法,特别针对CPU卸载的Huggingface模型进行了优化。
-
AutoCast工具:新增的AutoCast工具可以将ONNX模型转换为FP16或BF16格式,方便在不同硬件平台上部署。
-
低内存模式:llm_ptq示例新增了--low_memory_mode标志,支持使用压缩权重初始化HF模型,显著降低了PTQ和量化检查点导出的峰值内存需求。
兼容性调整
0.31.0版本停止了对Python 3.9的支持,建议用户升级到更高版本的Python环境以获得更好的性能和功能支持。
总结
TensorRT-Model-Optimizer 0.31.0版本在分布式训练检查点、量化功能和模型支持方面都做出了重要改进,特别是对大型语言模型的支持更加完善。这些更新不仅提高了工具的灵活性和易用性,也为模型优化和部署提供了更多可能性。对于深度学习工程师和研究人员来说,升级到新版本将能够获得更高效的模型优化体验。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00