Explosion Projects 开源项目教程
项目介绍
Explosion Projects 是由 Explosion AI 开发的一个开源项目集合,主要用于自然语言处理(NLP)和机器学习任务。该项目集合包含了多个子项目,每个子项目都专注于解决特定的 NLP 问题,如文本分类、命名实体识别、依存句法分析等。Explosion Projects 的核心库是 spaCy,一个高效且易于使用的 NLP 库,广泛应用于学术研究和工业应用中。
项目快速启动
安装
首先,确保你已经安装了 Python 3.6 或更高版本。然后,使用 pip 安装 spaCy 和相关依赖:
pip install spacy
接下来,下载并安装一个预训练的模型。例如,下载一个用于英语的预训练模型:
python -m spacy download en_core_web_sm
示例代码
以下是一个简单的示例代码,展示了如何使用 spaCy 进行文本处理:
import spacy
# 加载预训练模型
nlp = spacy.load("en_core_web_sm")
# 处理文本
text = "Apple is looking at buying U.K. startup for $1 billion."
doc = nlp(text)
# 打印命名实体
for ent in doc.ents:
print(ent.text, ent.label_)
运行上述代码后,你将看到文本中识别出的命名实体及其类别。
应用案例和最佳实践
文本分类
文本分类是 NLP 中的一个常见任务,用于将文本分配到预定义的类别中。spaCy 提供了强大的工具来构建和训练文本分类模型。以下是一个简单的文本分类示例:
import spacy
from spacy.pipeline import TextCategorizer
# 加载预训练模型
nlp = spacy.load("en_core_web_sm")
# 添加文本分类器
textcat = TextCategorizer(nlp.vocab)
nlp.add_pipe(textcat)
# 训练数据
train_data = [
("I love spaCy", {"cats": {"POSITIVE": 1, "NEGATIVE": 0}}),
("spaCy is terrible", {"cats": {"POSITIVE": 0, "NEGATIVE": 1}}),
]
# 训练模型
for text, annotations in train_data:
doc = nlp.make_doc(text)
example = Example.from_dict(doc, annotations)
nlp.update([example])
# 测试模型
test_text = "spaCy is amazing"
doc = nlp(test_text)
print(doc.cats)
命名实体识别
命名实体识别(NER)是识别文本中命名实体(如人名、地名、组织名等)的过程。spaCy 提供了预训练的 NER 模型,可以直接使用。以下是一个简单的 NER 示例:
import spacy
# 加载预训练模型
nlp = spacy.load("en_core_web_sm")
# 处理文本
text = "Apple is looking at buying U.K. startup for $1 billion."
doc = nlp(text)
# 打印命名实体
for ent in doc.ents:
print(ent.text, ent.label_)
典型生态项目
Prodigy
Prodigy 是一个由 Explosion AI 开发的注释工具,专门用于快速构建和训练机器学习模型。Prodigy 与 spaCy 紧密集成,可以用于数据标注、模型训练和评估。
spaCy Universe
spaCy Universe 是一个包含各种扩展、插件和工具的生态系统,用于增强 spaCy 的功能。这些工具包括可视化工具、数据处理工具、模型训练工具等。
Thinc
Thinc 是 Explosion AI 开发的一个轻量级深度学习库,专门用于构建和训练神经网络模型。Thinc 与 spaCy 紧密集成,可以用于构建自定义的 NLP 模型。
通过这些生态项目,Explosion Projects 提供了一个完整的 NLP 解决方案,从数据标注到模型训练再到部署,满足了各种 NLP 任务的需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00