KServe中LoRA模型加载与调用问题解析
2025-06-15 18:08:21作者:余洋婵Anita
背景介绍
KServe作为Kubernetes上的模型服务框架,支持多种机器学习模型的部署和推理。近期在KServe的HuggingFace服务组件中,用户报告了一个关于LoRA(Low-Rank Adaptation)模型加载与调用的问题。LoRA是一种高效的模型微调技术,通过在预训练模型上添加低秩适配器来实现特定任务的适配。
问题现象
用户在KServe中成功部署了基于HuggingFace的LLM模型,并配置了LoRA适配器。从日志中可以确认LoRA适配器已成功加载:
Loaded new LoRA adapter: name 'llama_adapter', path '/mnt/large_models/test-finetuned-model/'
然而,当用户尝试通过兼容的API接口调用该LoRA适配器时,却收到了"Model with name llama_adapter does not exist"的错误响应。这表明虽然LoRA适配器已加载,但KServe的数据平面未能正确识别和路由到该适配器。
技术分析
配置解析
从用户提供的InferenceService YAML配置中,我们可以看到几个关键参数:
- 基础模型路径:
/mnt/large_models/test-finetuned-model/base_model/ - LoRA适配器配置:
{"name":"llama_adapter", "path":"/mnt/large_models/test-finetuned-model/"} - 启用了vLLM后端并支持LoRA:
--backend=vllm --enable-lora
调用方式差异
用户尝试使用两种不同的调用方式:
- 基础模型调用:使用
"model": "llama-finetuned"可以成功获得响应 - LoRA适配器调用:使用
"model": "llama_adapter"则返回模型不存在的错误
这与vLLM官方文档中描述的LoRA服务行为不符,vLLM明确支持通过指定不同的模型名称来路由到不同的LoRA适配器。
根本原因
经过分析,问题可能出在以下几个方面:
- KServe的HuggingFace服务组件在vLLM后端集成时,未完全实现LoRA适配器的名称路由功能
- 当前版本中,LoRA适配器虽然加载成功,但调用时仍需使用基础模型名称
- 服务端可能没有正确将LoRA适配器名称注册到可路由的模型列表中
解决方案与建议
临时解决方案
目前可以尝试以下方法:
- 在调用时使用基础模型名称而非LoRA适配器名称
- 确认基础模型的推理结果是否已经应用了LoRA适配器的效果
长期改进
KServe开发团队已确认将增加对指定LoRA模型名称的支持。这一改进将实现:
- 支持通过不同模型名称路由到对应的LoRA适配器
- 保持与vLLM原生LoRA实现的行为一致性
- 提供更灵活的模型适配器管理能力
最佳实践建议
对于需要在KServe中使用LoRA适配器的用户,建议:
- 确保使用最新版本的KServe和HuggingFace服务组件
- 仔细检查LoRA适配器的加载日志,确认适配器已成功加载
- 根据实际版本选择适当的调用方式(使用基础模型名称或LoRA适配器名称)
- 监控模型推理结果,确认LoRA适配效果是否生效
总结
KServe作为生产级的模型服务平台,正在不断完善对先进模型技术如LoRA的支持。当前版本中存在的LoRA适配器调用问题将在后续版本中得到修复,届时用户将能够更灵活地管理和调用不同的模型适配器。对于需要立即使用此功能的用户,可暂时采用基础模型名称调用的变通方案。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
135
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218