Docling项目离线环境下禁用OCR模型下载的解决方案
2025-05-06 12:14:31作者:彭桢灵Jeremy
在实际生产环境中,很多Linux服务器出于安全考虑会限制互联网访问,这给使用Docling这类依赖预训练模型的项目带来了挑战。本文将详细介绍如何在无网络连接的Linux服务器上使用Docling进行PDF文档解析,同时避免自动下载OCR模型的问题。
问题背景
Docling作为一款强大的文档处理工具,默认会从Hugging Face模型库下载OCR相关模型。当服务器无法访问互联网时,这一行为会导致程序运行失败。虽然用户尝试手动下载模型并复制到服务器缓存目录,但系统仍会尝试检查更新并下载。
核心解决方案
Docling提供了两种主要方式来解决这一问题:
- 完全禁用OCR功能:对于不需要OCR处理的PDF文档,可以直接关闭OCR功能
- 指定本地模型路径:对于需要OCR的场景,可以配置Docling使用预先下载的本地模型
方法一:禁用OCR处理
通过配置PdfPipelineOptions,可以完全关闭OCR功能:
from docling.document_converter import DocumentConverter
from docling import PdfPipelineOptions, InputFormat, PdfFormatOption
pipeline_options = PdfPipelineOptions()
pipeline_options.do_ocr = False # 关键设置,禁用OCR
pipeline_options.do_table_structure = True
pipeline_options.table_structure_options.do_cell_matching = True
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
这种方法适用于处理本身包含可识别文本的标准PDF文档,无需OCR即可提取内容。
方法二:使用本地模型路径
对于必须使用OCR的场景,可以预先在有网络的机器上下载模型,然后指定本地路径:
from docling.document_converter import DocumentConverter
from docling import PdfPipelineOptions, InputFormat, PdfFormatOption
pipeline_options = PdfPipelineOptions()
pipeline_options.artifacts_path = "/path/to/local/models" # 指定本地模型路径
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
实施建议
- 环境准备:在有网络的开发机上,先运行一次Docling让系统自动下载所有依赖模型
- 模型迁移:将缓存目录(通常是~/.cache/huggingface/hub)完整复制到生产服务器
- 路径配置:在生产环境中明确指定本地模型路径,避免自动下载
- 权限检查:确保应用程序有权限访问模型文件所在目录
注意事项
- 模型文件通常较大,迁移时注意磁盘空间
- 不同版本的Docling可能依赖不同版本的模型,建议保持开发和生产环境一致
- 对于表格解析等特定功能,即使禁用OCR,Docling仍能处理PDF中的原生表格结构
通过以上方法,用户可以在完全离线的生产环境中稳定使用Docling进行文档处理,既保证了系统安全性,又不影响核心功能的正常运行。
登录后查看全文
最新内容推荐
【免费下载】 免费获取Vivado 2017.4安装包及License(附带安装教程)【亲测免费】 探索脑网络连接:EEGLAB与BCT工具箱的完美结合 探索序列数据的秘密:LSTM Python代码资源库推荐【亲测免费】 小米屏下指纹手机刷机后指纹添加失败?这个开源项目帮你解决!【亲测免费】 AD9361校准指南:解锁无线通信系统的关键 探索高效工业自动化:SSC从站协议栈代码工具全面解析 微信小程序源码-仿饿了么:打造你的外卖小程序【亲测免费】 探索无线通信新境界:CMT2300A无线收发模块Demo基于STM32程序源码【亲测免费】 JDK8 中文API文档下载仓库:Java开发者的必备利器【免费下载】 Mac串口调试利器:CoolTerm与SerialPortUtility
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
514
3.69 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
873
530
Ascend Extension for PyTorch
Python
315
358
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
333
151
暂无简介
Dart
753
181
React Native鸿蒙化仓库
JavaScript
298
347
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
110
125
仓颉编译器源码及 cjdb 调试工具。
C++
152
884