Docling项目离线环境下禁用OCR模型下载的解决方案
2025-05-06 00:00:12作者:彭桢灵Jeremy
在实际生产环境中,很多Linux服务器出于安全考虑会限制互联网访问,这给使用Docling这类依赖预训练模型的项目带来了挑战。本文将详细介绍如何在无网络连接的Linux服务器上使用Docling进行PDF文档解析,同时避免自动下载OCR模型的问题。
问题背景
Docling作为一款强大的文档处理工具,默认会从Hugging Face模型库下载OCR相关模型。当服务器无法访问互联网时,这一行为会导致程序运行失败。虽然用户尝试手动下载模型并复制到服务器缓存目录,但系统仍会尝试检查更新并下载。
核心解决方案
Docling提供了两种主要方式来解决这一问题:
- 完全禁用OCR功能:对于不需要OCR处理的PDF文档,可以直接关闭OCR功能
- 指定本地模型路径:对于需要OCR的场景,可以配置Docling使用预先下载的本地模型
方法一:禁用OCR处理
通过配置PdfPipelineOptions,可以完全关闭OCR功能:
from docling.document_converter import DocumentConverter
from docling import PdfPipelineOptions, InputFormat, PdfFormatOption
pipeline_options = PdfPipelineOptions()
pipeline_options.do_ocr = False # 关键设置,禁用OCR
pipeline_options.do_table_structure = True
pipeline_options.table_structure_options.do_cell_matching = True
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
这种方法适用于处理本身包含可识别文本的标准PDF文档,无需OCR即可提取内容。
方法二:使用本地模型路径
对于必须使用OCR的场景,可以预先在有网络的机器上下载模型,然后指定本地路径:
from docling.document_converter import DocumentConverter
from docling import PdfPipelineOptions, InputFormat, PdfFormatOption
pipeline_options = PdfPipelineOptions()
pipeline_options.artifacts_path = "/path/to/local/models" # 指定本地模型路径
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
实施建议
- 环境准备:在有网络的开发机上,先运行一次Docling让系统自动下载所有依赖模型
- 模型迁移:将缓存目录(通常是~/.cache/huggingface/hub)完整复制到生产服务器
- 路径配置:在生产环境中明确指定本地模型路径,避免自动下载
- 权限检查:确保应用程序有权限访问模型文件所在目录
注意事项
- 模型文件通常较大,迁移时注意磁盘空间
- 不同版本的Docling可能依赖不同版本的模型,建议保持开发和生产环境一致
- 对于表格解析等特定功能,即使禁用OCR,Docling仍能处理PDF中的原生表格结构
通过以上方法,用户可以在完全离线的生产环境中稳定使用Docling进行文档处理,既保证了系统安全性,又不影响核心功能的正常运行。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133