Astropy项目中时间序列降采样性能优化方案解析
2025-06-12 11:58:19作者:伍霜盼Ellen
在Astropy项目的开发过程中,时间序列降采样功能aggregate_downsample的性能问题引起了开发团队的关注。该功能默认使用np.nanmean作为聚合函数,但由于其缺乏reduceat属性,导致在处理大型数据集时性能表现不佳。
性能瓶颈分析
原实现方案存在以下关键问题:
- 当使用
np.nanmean作为聚合函数时,系统会回退到手动实现的reduceat方法 - 手动实现中包含循环结构,导致计算效率低下
- 对于包含NaN值的大型数据集,性能下降尤为明显
优化方案设计
开发团队提出了一种创新的优化方案,通过自定义nanmean_reduceat函数来替代默认实现。该方案经历了多次迭代优化:
- 基础版本:直接修改数据副本中的NaN值为0,然后计算加权平均值
- 内存优化:仅在检测到NaN值时创建数据副本
- 计算优化:对于无NaN数据,直接从索引差值计算计数
- 边界处理:正确处理索引差值为负的情况
最终实现方案
经过多次讨论和优化,最终确定的实现方案具有以下特点:
def nanmean_reduceat(data, indices):
mask = np.isnan(data)
if mask.any(): # 如果存在NaN值
data_copy = data.copy()
data_copy[mask] = 0
count_data = np.add.reduceat(~mask, indices)
count_data = count_data.astype(float)
count_data[count_data == 0] = np.nan
else:
data_copy = data
count_data = np.diff(indices, append=len(data))
count_data[count_data <= 0] = 1
sum_data = np.add.reduceat(data_copy, indices)
return sum_data / count_data
性能对比
优化后的方案在测试中展现出显著性能提升:
- 处理包含NaN值的数据集时,速度提升约75倍
- 对于不含NaN值的数据集,计算效率也有明显改善
- 结果精度与原实现完全一致
后续问题与解决
在实际应用中发现,该优化方案与Astropy的MaskedQuantity类型存在兼容性问题。这一问题已被单独记录并将在后续版本中解决,体现了开源项目持续改进的特点。
技术启示
这一优化案例展示了几个重要的技术实践:
- 对于科学计算库,即使是看似简单的聚合函数也可能成为性能瓶颈
- 在保持数学精度的前提下,通过算法优化可以获得数量级的性能提升
- 完善的测试体系对于确保优化不改变原有功能至关重要
- 开源协作模式能够通过多方讨论产生更优的解决方案
Astropy团队通过这一优化,显著提升了时间序列处理能力,为天文学数据分析提供了更高效的工具基础。这一改进将被包含在未来的版本发布中,惠及广大科研用户。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Visual Studio 2015企业版中文版下载安装完全指南 - 专业开发工具必备资源 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 开源电子设计自动化利器:KiCad EDA全方位使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CVE-2024-38077伪代码修复版EXP资源详解:Windows远程桌面授权服务问题利用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
297
2.64 K
Ascend Extension for PyTorch
Python
128
152
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
608
191
React Native鸿蒙化仓库
JavaScript
228
307
暂无简介
Dart
591
128
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
612
仓颉编译器源码及 cjdb 调试工具。
C++
122
496
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
47
77
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
179
64
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
456