Astropy项目中时间序列降采样性能优化方案解析
2025-06-12 17:59:23作者:伍霜盼Ellen
在Astropy项目的开发过程中,时间序列降采样功能aggregate_downsample的性能问题引起了开发团队的关注。该功能默认使用np.nanmean作为聚合函数,但由于其缺乏reduceat属性,导致在处理大型数据集时性能表现不佳。
性能瓶颈分析
原实现方案存在以下关键问题:
- 当使用
np.nanmean作为聚合函数时,系统会回退到手动实现的reduceat方法 - 手动实现中包含循环结构,导致计算效率低下
- 对于包含NaN值的大型数据集,性能下降尤为明显
优化方案设计
开发团队提出了一种创新的优化方案,通过自定义nanmean_reduceat函数来替代默认实现。该方案经历了多次迭代优化:
- 基础版本:直接修改数据副本中的NaN值为0,然后计算加权平均值
- 内存优化:仅在检测到NaN值时创建数据副本
- 计算优化:对于无NaN数据,直接从索引差值计算计数
- 边界处理:正确处理索引差值为负的情况
最终实现方案
经过多次讨论和优化,最终确定的实现方案具有以下特点:
def nanmean_reduceat(data, indices):
mask = np.isnan(data)
if mask.any(): # 如果存在NaN值
data_copy = data.copy()
data_copy[mask] = 0
count_data = np.add.reduceat(~mask, indices)
count_data = count_data.astype(float)
count_data[count_data == 0] = np.nan
else:
data_copy = data
count_data = np.diff(indices, append=len(data))
count_data[count_data <= 0] = 1
sum_data = np.add.reduceat(data_copy, indices)
return sum_data / count_data
性能对比
优化后的方案在测试中展现出显著性能提升:
- 处理包含NaN值的数据集时,速度提升约75倍
- 对于不含NaN值的数据集,计算效率也有明显改善
- 结果精度与原实现完全一致
后续问题与解决
在实际应用中发现,该优化方案与Astropy的MaskedQuantity类型存在兼容性问题。这一问题已被单独记录并将在后续版本中解决,体现了开源项目持续改进的特点。
技术启示
这一优化案例展示了几个重要的技术实践:
- 对于科学计算库,即使是看似简单的聚合函数也可能成为性能瓶颈
- 在保持数学精度的前提下,通过算法优化可以获得数量级的性能提升
- 完善的测试体系对于确保优化不改变原有功能至关重要
- 开源协作模式能够通过多方讨论产生更优的解决方案
Astropy团队通过这一优化,显著提升了时间序列处理能力,为天文学数据分析提供了更高效的工具基础。这一改进将被包含在未来的版本发布中,惠及广大科研用户。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669