【亲测免费】 so-vits-svc 项目使用教程
2026-01-21 05:11:14作者:宣海椒Queenly
1. 项目介绍
so-vits-svc 是一个基于 SoftVC 和 VITS 的歌唱语音转换(Singing Voice Conversion, SVC)项目。该项目的主要目标是实现高质量的歌唱语音转换,而不是传统的文本到语音(Text-to-Speech, TTS)转换。so-vits-svc 通过使用 SoftVC 内容编码器提取源音频的语音特征,并将这些特征直接输入到 VITS 模型中,从而保留原始音频的音高和语调。此外,项目还使用了 NSF HiFiGAN 作为声码器,以解决声音中断的问题。
2. 项目快速启动
2.1 环境准备
首先,确保你的系统已经安装了 Python 3.8 或更高版本。然后,使用以下命令安装项目所需的依赖:
pip install -r requirements.txt
2.2 数据准备
在开始训练之前,你需要准备一个包含多个说话者的音频数据集。数据集的目录结构应如下所示:
dataset_raw/
├── speaker0/
│ ├── audio1.wav
│ ├── audio2.wav
│ └── ...
└── speaker1/
├── audio1.wav
├── audio2.wav
└── ...
2.3 数据预处理
使用以下命令对数据进行预处理:
python preprocess.py --input_dir dataset_raw --output_dir dataset_processed
2.4 模型训练
预处理完成后,使用以下命令开始训练模型:
python train.py --config config.json
2.5 模型推理
训练完成后,你可以使用以下命令进行推理:
python inference.py --model_path logs/44k/G_latest.pth --config_path configs/config.json --input_audio input.wav --output_audio output.wav
3. 应用案例和最佳实践
3.1 应用案例
so-vits-svc 可以应用于多种场景,例如:
- 虚拟偶像制作:通过将不同歌手的声音转换为虚拟偶像的声音,制作出独特的音乐作品。
- 语音修复:将受损或低质量的歌唱音频转换为高质量的音频。
- 语音风格转换:将一种歌唱风格转换为另一种风格,例如将流行歌曲转换为古典音乐风格。
3.2 最佳实践
- 数据集质量:确保数据集中的音频质量高且多样性丰富,以提高模型的泛化能力。
- 超参数调整:根据具体任务调整训练过程中的超参数,如学习率、批量大小等。
- 模型评估:定期评估模型的性能,使用客观指标(如 MOS 评分)和主观听觉测试来评估转换后的音频质量。
4. 典型生态项目
4.1 MoeVoiceStudio
MoeVoiceStudio 是一个包含可视化 f0 编辑器、说话者混合时间线编辑器等功能的项目。它使用 Onnx 模型,提供了更丰富的用户界面和功能。
4.2 w-okada/voice-changer
w-okada/voice-changer 是一个支持实时语音转换的客户端项目。它提供了实时转换功能,适用于需要即时语音转换的场景。
4.3 34j/so-vits-svc-fork
34j/so-vits-svc-fork 是 so-vits-svc 的一个分支,提供了改进的用户界面和更多功能。它基于 4.0 分支,并且模型兼容性较好。
通过这些生态项目,用户可以进一步扩展 so-vits-svc 的功能,满足更多应用场景的需求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248