YugabyteDB YSQL优化器中参数化过滤条件选择性估算问题分析
2025-05-25 21:42:10作者:牧宁李
在YugabyteDB的YSQL查询优化器中,发现了一个关于参数化过滤条件选择性估算的问题,该问题会影响YB Bitmap Table Scan路径的成本计算准确性。
问题背景
在YSQL查询优化过程中,当使用位图扫描(BitmapScan)时,优化器需要计算YB Bitmap Table Scan路径的行数估算值(path->rows)。这个值对于后续的查询计划选择和成本计算至关重要。
问题现象
在特定场景下,YSQL优化器对参数化过滤条件的选择性估算存在问题。具体表现为:
- 路径行数(path->rows)被错误地覆盖
- 参数化谓词的选择性未被正确考虑
- 导致最终的行数估算不准确
技术细节分析
在yb_cost_bitmap_table_scan函数中,存在以下关键问题:
- 初始设置的行数估算值被后续计算错误覆盖:
path->rows = clamp_row_est(baserel->tuples *
clauselist_selectivity(root, baserel->baserestrictinfo,
baserel->relid, JOIN_INNER, NULL));
path->rows = tuples_fetched;
-
参数化谓词(如示例中的
(a + b) >= s.y)未被纳入行数估算考虑范围 -
调试信息显示,在关键断点处:
- 参数化信息(param_info)指示的行数为209
- 基础关系(baserel)的行数为12345
- 但最终被设置为626(tuples_fetched)
影响范围
该问题会导致以下不良影响:
- 查询优化器可能选择次优的执行计划
- 资源分配可能不合理
- 查询性能可能低于预期
解决方案
修复方案相对简单直接:
- 移除错误覆盖path->rows的两行代码
- 保留初始正确的行数估算值
修复后,优化器能够正确反映参数化过滤条件的选择性,如示例中YB Bitmap Table Scan的行数估算从626调整为209(约为BitmapOr估算值626的1/3,符合范围谓词的默认选择性)。
验证测试
可以通过以下测试用例验证修复效果:
-- 测试表创建和数据准备
CREATE TABLE r (pk int, a int, b int, c char(10), v char(1024), PRIMARY KEY (pk asc));
CREATE TABLE s (x int, y int, z char(10));
CREATE INDEX i_r_a ON r (a asc);
CREATE INDEX i_r_c ON r (c asc);
-- 数据插入和分析
INSERT INTO r SELECT i, i/5, i,
concat(chr((((i-1)/26/26)%26)+ascii('a')),
chr((((i-1)/26)%26)+ascii('a')),
chr(((i-1)%26)+ascii('a')))
FROM generate_series(1,12345) i;
INSERT INTO s SELECT i/3, i,
concat(chr((((i-1)/26/26)%26)+ascii('a')),
chr((((i-1)/26)%26)+ascii('a')),
chr(((i-1)%26)+ascii('a')))
FROM generate_series(1,123) i;
ANALYZE r, s;
-- 启用相关优化器功能
SET yb_enable_base_scans_cost_model = on;
SET yb_enable_bitmapscan = on;
SET enable_bitmapscan = on;
SET yb_prefer_bnl = off;
-- 测试查询
EXPLAIN SELECT * FROM r, s WHERE (a = x OR c <= 'b') AND a + b >= y;
总结
这个问题展示了查询优化器中一个典型的选择性估算错误案例。通过修复,确保了参数化过滤条件能够被正确纳入成本计算,从而帮助优化器做出更合理的计划选择。对于使用YugabyteDB并依赖位图扫描性能的用户,这个修复将带来更准确的查询计划和更好的性能表现。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134