YugabyteDB YSQL优化器中参数化过滤条件选择性估算问题分析
2025-05-25 01:40:28作者:牧宁李
在YugabyteDB的YSQL查询优化器中,发现了一个关于参数化过滤条件选择性估算的问题,该问题会影响YB Bitmap Table Scan路径的成本计算准确性。
问题背景
在YSQL查询优化过程中,当使用位图扫描(BitmapScan)时,优化器需要计算YB Bitmap Table Scan路径的行数估算值(path->rows)。这个值对于后续的查询计划选择和成本计算至关重要。
问题现象
在特定场景下,YSQL优化器对参数化过滤条件的选择性估算存在问题。具体表现为:
- 路径行数(path->rows)被错误地覆盖
 - 参数化谓词的选择性未被正确考虑
 - 导致最终的行数估算不准确
 
技术细节分析
在yb_cost_bitmap_table_scan函数中,存在以下关键问题:
- 初始设置的行数估算值被后续计算错误覆盖:
 
path->rows = clamp_row_est(baserel->tuples *
              clauselist_selectivity(root, baserel->baserestrictinfo,
                                    baserel->relid, JOIN_INNER, NULL));
path->rows = tuples_fetched;
- 
参数化谓词(如示例中的
(a + b) >= s.y)未被纳入行数估算考虑范围 - 
调试信息显示,在关键断点处:
 
- 参数化信息(param_info)指示的行数为209
 - 基础关系(baserel)的行数为12345
 - 但最终被设置为626(tuples_fetched)
 
影响范围
该问题会导致以下不良影响:
- 查询优化器可能选择次优的执行计划
 - 资源分配可能不合理
 - 查询性能可能低于预期
 
解决方案
修复方案相对简单直接:
- 移除错误覆盖path->rows的两行代码
 - 保留初始正确的行数估算值
 
修复后,优化器能够正确反映参数化过滤条件的选择性,如示例中YB Bitmap Table Scan的行数估算从626调整为209(约为BitmapOr估算值626的1/3,符合范围谓词的默认选择性)。
验证测试
可以通过以下测试用例验证修复效果:
-- 测试表创建和数据准备
CREATE TABLE r (pk int, a int, b int, c char(10), v char(1024), PRIMARY KEY (pk asc));
CREATE TABLE s (x int, y int, z char(10));
CREATE INDEX i_r_a ON r (a asc);
CREATE INDEX i_r_c ON r (c asc);
-- 数据插入和分析
INSERT INTO r SELECT i, i/5, i, 
       concat(chr((((i-1)/26/26)%26)+ascii('a')),
              chr((((i-1)/26)%26)+ascii('a')),
              chr(((i-1)%26)+ascii('a')))
FROM generate_series(1,12345) i;
INSERT INTO s SELECT i/3, i,
       concat(chr((((i-1)/26/26)%26)+ascii('a')),
              chr((((i-1)/26)%26)+ascii('a')),
              chr(((i-1)%26)+ascii('a')))
FROM generate_series(1,123) i;
ANALYZE r, s;
-- 启用相关优化器功能
SET yb_enable_base_scans_cost_model = on;
SET yb_enable_bitmapscan = on;
SET enable_bitmapscan = on;
SET yb_prefer_bnl = off;
-- 测试查询
EXPLAIN SELECT * FROM r, s WHERE (a = x OR c <= 'b') AND a + b >= y;
总结
这个问题展示了查询优化器中一个典型的选择性估算错误案例。通过修复,确保了参数化过滤条件能够被正确纳入成本计算,从而帮助优化器做出更合理的计划选择。对于使用YugabyteDB并依赖位图扫描性能的用户,这个修复将带来更准确的查询计划和更好的性能表现。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446