YugabyteDB YSQL优化器中参数化过滤条件选择性估算问题分析
2025-05-25 22:56:09作者:牧宁李
在YugabyteDB的YSQL查询优化器中,发现了一个关于参数化过滤条件选择性估算的问题,该问题会影响YB Bitmap Table Scan路径的成本计算准确性。
问题背景
在YSQL查询优化过程中,当使用位图扫描(BitmapScan)时,优化器需要计算YB Bitmap Table Scan路径的行数估算值(path->rows)。这个值对于后续的查询计划选择和成本计算至关重要。
问题现象
在特定场景下,YSQL优化器对参数化过滤条件的选择性估算存在问题。具体表现为:
- 路径行数(path->rows)被错误地覆盖
- 参数化谓词的选择性未被正确考虑
- 导致最终的行数估算不准确
技术细节分析
在yb_cost_bitmap_table_scan函数中,存在以下关键问题:
- 初始设置的行数估算值被后续计算错误覆盖:
path->rows = clamp_row_est(baserel->tuples *
clauselist_selectivity(root, baserel->baserestrictinfo,
baserel->relid, JOIN_INNER, NULL));
path->rows = tuples_fetched;
-
参数化谓词(如示例中的
(a + b) >= s.y
)未被纳入行数估算考虑范围 -
调试信息显示,在关键断点处:
- 参数化信息(param_info)指示的行数为209
- 基础关系(baserel)的行数为12345
- 但最终被设置为626(tuples_fetched)
影响范围
该问题会导致以下不良影响:
- 查询优化器可能选择次优的执行计划
- 资源分配可能不合理
- 查询性能可能低于预期
解决方案
修复方案相对简单直接:
- 移除错误覆盖path->rows的两行代码
- 保留初始正确的行数估算值
修复后,优化器能够正确反映参数化过滤条件的选择性,如示例中YB Bitmap Table Scan的行数估算从626调整为209(约为BitmapOr估算值626的1/3,符合范围谓词的默认选择性)。
验证测试
可以通过以下测试用例验证修复效果:
-- 测试表创建和数据准备
CREATE TABLE r (pk int, a int, b int, c char(10), v char(1024), PRIMARY KEY (pk asc));
CREATE TABLE s (x int, y int, z char(10));
CREATE INDEX i_r_a ON r (a asc);
CREATE INDEX i_r_c ON r (c asc);
-- 数据插入和分析
INSERT INTO r SELECT i, i/5, i,
concat(chr((((i-1)/26/26)%26)+ascii('a')),
chr((((i-1)/26)%26)+ascii('a')),
chr(((i-1)%26)+ascii('a')))
FROM generate_series(1,12345) i;
INSERT INTO s SELECT i/3, i,
concat(chr((((i-1)/26/26)%26)+ascii('a')),
chr((((i-1)/26)%26)+ascii('a')),
chr(((i-1)%26)+ascii('a')))
FROM generate_series(1,123) i;
ANALYZE r, s;
-- 启用相关优化器功能
SET yb_enable_base_scans_cost_model = on;
SET yb_enable_bitmapscan = on;
SET enable_bitmapscan = on;
SET yb_prefer_bnl = off;
-- 测试查询
EXPLAIN SELECT * FROM r, s WHERE (a = x OR c <= 'b') AND a + b >= y;
总结
这个问题展示了查询优化器中一个典型的选择性估算错误案例。通过修复,确保了参数化过滤条件能够被正确纳入成本计算,从而帮助优化器做出更合理的计划选择。对于使用YugabyteDB并依赖位图扫描性能的用户,这个修复将带来更准确的查询计划和更好的性能表现。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133