YugabyteDB YSQL优化器中参数化过滤条件选择性估算问题分析
2025-05-25 21:42:10作者:牧宁李
在YugabyteDB的YSQL查询优化器中,发现了一个关于参数化过滤条件选择性估算的问题,该问题会影响YB Bitmap Table Scan路径的成本计算准确性。
问题背景
在YSQL查询优化过程中,当使用位图扫描(BitmapScan)时,优化器需要计算YB Bitmap Table Scan路径的行数估算值(path->rows)。这个值对于后续的查询计划选择和成本计算至关重要。
问题现象
在特定场景下,YSQL优化器对参数化过滤条件的选择性估算存在问题。具体表现为:
- 路径行数(path->rows)被错误地覆盖
- 参数化谓词的选择性未被正确考虑
- 导致最终的行数估算不准确
技术细节分析
在yb_cost_bitmap_table_scan函数中,存在以下关键问题:
- 初始设置的行数估算值被后续计算错误覆盖:
path->rows = clamp_row_est(baserel->tuples *
clauselist_selectivity(root, baserel->baserestrictinfo,
baserel->relid, JOIN_INNER, NULL));
path->rows = tuples_fetched;
-
参数化谓词(如示例中的
(a + b) >= s.y)未被纳入行数估算考虑范围 -
调试信息显示,在关键断点处:
- 参数化信息(param_info)指示的行数为209
- 基础关系(baserel)的行数为12345
- 但最终被设置为626(tuples_fetched)
影响范围
该问题会导致以下不良影响:
- 查询优化器可能选择次优的执行计划
- 资源分配可能不合理
- 查询性能可能低于预期
解决方案
修复方案相对简单直接:
- 移除错误覆盖path->rows的两行代码
- 保留初始正确的行数估算值
修复后,优化器能够正确反映参数化过滤条件的选择性,如示例中YB Bitmap Table Scan的行数估算从626调整为209(约为BitmapOr估算值626的1/3,符合范围谓词的默认选择性)。
验证测试
可以通过以下测试用例验证修复效果:
-- 测试表创建和数据准备
CREATE TABLE r (pk int, a int, b int, c char(10), v char(1024), PRIMARY KEY (pk asc));
CREATE TABLE s (x int, y int, z char(10));
CREATE INDEX i_r_a ON r (a asc);
CREATE INDEX i_r_c ON r (c asc);
-- 数据插入和分析
INSERT INTO r SELECT i, i/5, i,
concat(chr((((i-1)/26/26)%26)+ascii('a')),
chr((((i-1)/26)%26)+ascii('a')),
chr(((i-1)%26)+ascii('a')))
FROM generate_series(1,12345) i;
INSERT INTO s SELECT i/3, i,
concat(chr((((i-1)/26/26)%26)+ascii('a')),
chr((((i-1)/26)%26)+ascii('a')),
chr(((i-1)%26)+ascii('a')))
FROM generate_series(1,123) i;
ANALYZE r, s;
-- 启用相关优化器功能
SET yb_enable_base_scans_cost_model = on;
SET yb_enable_bitmapscan = on;
SET enable_bitmapscan = on;
SET yb_prefer_bnl = off;
-- 测试查询
EXPLAIN SELECT * FROM r, s WHERE (a = x OR c <= 'b') AND a + b >= y;
总结
这个问题展示了查询优化器中一个典型的选择性估算错误案例。通过修复,确保了参数化过滤条件能够被正确纳入成本计算,从而帮助优化器做出更合理的计划选择。对于使用YugabyteDB并依赖位图扫描性能的用户,这个修复将带来更准确的查询计划和更好的性能表现。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
201
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
427
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
694