Amazon SageMaker Feature Store 开源项目最佳实践教程
2025-05-14 16:12:57作者:郁楠烈Hubert
1. 项目介绍
Amazon SageMaker Feature Store 是一种完全托管的服务,旨在简化机器学习(ML)特征存储的流程。这个开源项目是一个端到端的实践教程,它展示了如何使用 Amazon SageMaker Feature Store 来创建、管理和使用特征数据。本项目旨在帮助开发者理解 Feature Store 的核心概念,并通过实际案例演示其应用。
2. 项目快速启动
以下是快速启动本项目所需的步骤和代码示例:
环境准备
-
安装必要的 Python 包:
pip install sagemaker sagemaker-feature-store -
配置 AWS 环境变量和 IAM 权限。
创建特征组
在 Amazon SageMaker Feature Store 中,首先需要定义一个特征组(Feature Group),以下是一个简单的示例代码:
from sagemaker import get_execution_role
from sagemaker.feature_store import FeatureGroup, FeatureDefinition
# 获取执行角色
role = get_execution_role()
# 定义特征
feature_definitions = [
FeatureDefinition(
feature_name="feature1",
feature_type="Integer",
description="第一个特征",
),
FeatureDefinition(
feature_name="feature2",
feature_type="String",
description="第二个特征",
),
]
# 创建特征组
feature_group_name = "my-feature-group"
feature_group = FeatureGroup(
name=feature_group_name,
feature_definitions=feature_definitions,
role_arn=role,
sagemaker_session=sagemaker.Session()
)
# 创建特征组(如果尚未创建)
if not feature_group.exists():
feature_group.create()
上传特征数据
将特征数据上传到 Feature Store:
import pandas as pd
from sagemaker.feature_store import FeatureGroup
# 创建一个 Pandas DataFrame 作为示例数据
data = pd.DataFrame({
"feature1": [10, 20, 30],
"feature2": ["A", "B", "C"],
})
# 将数据上传到特征组
feature_group.load_data(data, "my-data-s3-prefix")
3. 应用案例和最佳实践
在本项目中,我们展示了如何使用 Amazon SageMaker Feature Store 来支持机器学习工作流程。以下是一些应用案例和最佳实践:
- 实时特征更新:在实时机器学习模型中,能够实时更新特征数据是至关重要的。
- 特征共享:通过 Feature Store,可以在不同的机器学习项目之间共享特征,提高效率。
- 数据一致性:确保特征数据的一致性和准确性,避免模型训练和推理时的偏差。
4. 典型生态项目
Amazon SageMaker Feature Store 适用于多种机器学习生态项目,包括但不限于:
- 推荐系统:利用特征 Store 存储用户和商品特征,为推荐模型提供数据。
- 异常检测:存储时间序列数据,用于检测异常模式。
- 自然语言处理:存储文本特征,用于训练语言模型。
以上是 Amazon SageMaker Feature Store 开源项目最佳实践教程的简要概述。通过遵循这些步骤和最佳实践,您可以更有效地利用 SageMaker Feature Store 来支持您的机器学习项目。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
349
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758