Amazon SageMaker Feature Store 开源项目最佳实践教程
2025-05-14 06:34:58作者:郁楠烈Hubert
1. 项目介绍
Amazon SageMaker Feature Store 是一种完全托管的服务,旨在简化机器学习(ML)特征存储的流程。这个开源项目是一个端到端的实践教程,它展示了如何使用 Amazon SageMaker Feature Store 来创建、管理和使用特征数据。本项目旨在帮助开发者理解 Feature Store 的核心概念,并通过实际案例演示其应用。
2. 项目快速启动
以下是快速启动本项目所需的步骤和代码示例:
环境准备
-
安装必要的 Python 包:
pip install sagemaker sagemaker-feature-store -
配置 AWS 环境变量和 IAM 权限。
创建特征组
在 Amazon SageMaker Feature Store 中,首先需要定义一个特征组(Feature Group),以下是一个简单的示例代码:
from sagemaker import get_execution_role
from sagemaker.feature_store import FeatureGroup, FeatureDefinition
# 获取执行角色
role = get_execution_role()
# 定义特征
feature_definitions = [
FeatureDefinition(
feature_name="feature1",
feature_type="Integer",
description="第一个特征",
),
FeatureDefinition(
feature_name="feature2",
feature_type="String",
description="第二个特征",
),
]
# 创建特征组
feature_group_name = "my-feature-group"
feature_group = FeatureGroup(
name=feature_group_name,
feature_definitions=feature_definitions,
role_arn=role,
sagemaker_session=sagemaker.Session()
)
# 创建特征组(如果尚未创建)
if not feature_group.exists():
feature_group.create()
上传特征数据
将特征数据上传到 Feature Store:
import pandas as pd
from sagemaker.feature_store import FeatureGroup
# 创建一个 Pandas DataFrame 作为示例数据
data = pd.DataFrame({
"feature1": [10, 20, 30],
"feature2": ["A", "B", "C"],
})
# 将数据上传到特征组
feature_group.load_data(data, "my-data-s3-prefix")
3. 应用案例和最佳实践
在本项目中,我们展示了如何使用 Amazon SageMaker Feature Store 来支持机器学习工作流程。以下是一些应用案例和最佳实践:
- 实时特征更新:在实时机器学习模型中,能够实时更新特征数据是至关重要的。
- 特征共享:通过 Feature Store,可以在不同的机器学习项目之间共享特征,提高效率。
- 数据一致性:确保特征数据的一致性和准确性,避免模型训练和推理时的偏差。
4. 典型生态项目
Amazon SageMaker Feature Store 适用于多种机器学习生态项目,包括但不限于:
- 推荐系统:利用特征 Store 存储用户和商品特征,为推荐模型提供数据。
- 异常检测:存储时间序列数据,用于检测异常模式。
- 自然语言处理:存储文本特征,用于训练语言模型。
以上是 Amazon SageMaker Feature Store 开源项目最佳实践教程的简要概述。通过遵循这些步骤和最佳实践,您可以更有效地利用 SageMaker Feature Store 来支持您的机器学习项目。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.3 K
暂无简介
Dart
621
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
263
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
793
77