首页
/ Redis Rueidis库中向量搜索分数解析问题分析与解决方案

Redis Rueidis库中向量搜索分数解析问题分析与解决方案

2025-06-29 04:55:59作者:凤尚柏Louis

问题背景

在使用Redis的Rueidis客户端库进行向量相似度搜索时,开发者发现通过FtSearch命令返回的结果中,Score字段始终为0,而实际的向量相似度分数却存储在文档的__vec_score字段中。这一现象导致开发者无法直接获取正确的相似度评分。

技术细节分析

Redis向量搜索机制

Redis支持通过FT.SEARCH命令进行向量相似度搜索(KNN搜索),当使用向量搜索时,Redis会在返回结果中包含一个__vec_score字段,表示查询向量与文档向量之间的相似度分数。这个分数通常是一个浮点数,数值越小表示相似度越高。

Rueidis库的解析逻辑

Rueidis库的AsFtSearch()方法在解析搜索结果时,默认从结果文档的顶层获取Score字段。然而在向量搜索场景下,相似度分数被存储在文档的extra_attributes中的__vec_score字段,而非直接作为文档的Score属性返回。这种设计导致了分数解析的错位。

解决方案比较

1. 使用WITHSCORES选项

Redis的FT.SEARCH命令支持WITHSCORES选项,这可能会返回不同的分数格式。但根据实际测试,即使使用此选项,Score字段仍可能返回0,而实际向量相似度分数仍存储在__vec_score中。

2. 手动解析方案

目前最可靠的解决方案是手动从文档的__vec_score字段提取分数:

records = lo.Map(records, func(record rueidis.FtSearchDoc, _ int) rueidis.FtSearchDoc {
    if record.Score !=  {
        return record
    }
    record.Score, _ = strconv.ParseFloat(record.Doc["__vec_score"], 64)
    return record
})

3. 期待库的改进

从长远来看,Rueidis库可以考虑以下改进方向:

  • 添加专门的AsFtSearchVector()方法处理向量搜索结果
  • 在现有AsFtSearch()方法中添加对__vec_score字段的自动解析
  • 提供更完善的文档说明向量搜索的特殊处理方式

最佳实践建议

  1. 在使用向量搜索时,始终检查__vec_score字段而非依赖Score字段
  2. 对分数进行验证,确保其数值范围符合预期
  3. 考虑封装一个专门的向量搜索解析函数,统一处理分数解析逻辑
  4. 关注Rueidis库的更新,及时采用官方提供的解决方案

总结

Redis的向量搜索功能与传统的全文搜索在结果解析上存在差异,这在使用Rueidis等客户端库时需要特别注意。目前阶段,开发者需要手动处理向量相似度分数的解析,但这一情况未来可能会随着库的更新而改善。理解这一机制有助于开发者更好地利用Redis的向量搜索能力构建语义缓存等高级功能。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
62
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133