Redis Rueidis库中向量搜索分数解析问题分析与解决方案
2025-06-29 02:46:51作者:凤尚柏Louis
问题背景
在使用Redis的Rueidis客户端库进行向量相似度搜索时,开发者发现通过FtSearch命令返回的结果中,Score字段始终为0,而实际的向量相似度分数却存储在文档的__vec_score字段中。这一现象导致开发者无法直接获取正确的相似度评分。
技术细节分析
Redis向量搜索机制
Redis支持通过FT.SEARCH命令进行向量相似度搜索(KNN搜索),当使用向量搜索时,Redis会在返回结果中包含一个__vec_score字段,表示查询向量与文档向量之间的相似度分数。这个分数通常是一个浮点数,数值越小表示相似度越高。
Rueidis库的解析逻辑
Rueidis库的AsFtSearch()方法在解析搜索结果时,默认从结果文档的顶层获取Score字段。然而在向量搜索场景下,相似度分数被存储在文档的extra_attributes中的__vec_score字段,而非直接作为文档的Score属性返回。这种设计导致了分数解析的错位。
解决方案比较
1. 使用WITHSCORES选项
Redis的FT.SEARCH命令支持WITHSCORES选项,这可能会返回不同的分数格式。但根据实际测试,即使使用此选项,Score字段仍可能返回0,而实际向量相似度分数仍存储在__vec_score中。
2. 手动解析方案
目前最可靠的解决方案是手动从文档的__vec_score字段提取分数:
records = lo.Map(records, func(record rueidis.FtSearchDoc, _ int) rueidis.FtSearchDoc {
if record.Score != {
return record
}
record.Score, _ = strconv.ParseFloat(record.Doc["__vec_score"], 64)
return record
})
3. 期待库的改进
从长远来看,Rueidis库可以考虑以下改进方向:
- 添加专门的
AsFtSearchVector()方法处理向量搜索结果 - 在现有
AsFtSearch()方法中添加对__vec_score字段的自动解析 - 提供更完善的文档说明向量搜索的特殊处理方式
最佳实践建议
- 在使用向量搜索时,始终检查
__vec_score字段而非依赖Score字段 - 对分数进行验证,确保其数值范围符合预期
- 考虑封装一个专门的向量搜索解析函数,统一处理分数解析逻辑
- 关注Rueidis库的更新,及时采用官方提供的解决方案
总结
Redis的向量搜索功能与传统的全文搜索在结果解析上存在差异,这在使用Rueidis等客户端库时需要特别注意。目前阶段,开发者需要手动处理向量相似度分数的解析,但这一情况未来可能会随着库的更新而改善。理解这一机制有助于开发者更好地利用Redis的向量搜索能力构建语义缓存等高级功能。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
93
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.33 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1