Redis Rueidis库中向量搜索分数解析问题分析与解决方案
2025-06-29 19:15:42作者:凤尚柏Louis
问题背景
在使用Redis的Rueidis客户端库进行向量相似度搜索时,开发者发现通过FtSearch命令返回的结果中,Score字段始终为0,而实际的向量相似度分数却存储在文档的__vec_score字段中。这一现象导致开发者无法直接获取正确的相似度评分。
技术细节分析
Redis向量搜索机制
Redis支持通过FT.SEARCH命令进行向量相似度搜索(KNN搜索),当使用向量搜索时,Redis会在返回结果中包含一个__vec_score字段,表示查询向量与文档向量之间的相似度分数。这个分数通常是一个浮点数,数值越小表示相似度越高。
Rueidis库的解析逻辑
Rueidis库的AsFtSearch()方法在解析搜索结果时,默认从结果文档的顶层获取Score字段。然而在向量搜索场景下,相似度分数被存储在文档的extra_attributes中的__vec_score字段,而非直接作为文档的Score属性返回。这种设计导致了分数解析的错位。
解决方案比较
1. 使用WITHSCORES选项
Redis的FT.SEARCH命令支持WITHSCORES选项,这可能会返回不同的分数格式。但根据实际测试,即使使用此选项,Score字段仍可能返回0,而实际向量相似度分数仍存储在__vec_score中。
2. 手动解析方案
目前最可靠的解决方案是手动从文档的__vec_score字段提取分数:
records = lo.Map(records, func(record rueidis.FtSearchDoc, _ int) rueidis.FtSearchDoc {
if record.Score != {
return record
}
record.Score, _ = strconv.ParseFloat(record.Doc["__vec_score"], 64)
return record
})
3. 期待库的改进
从长远来看,Rueidis库可以考虑以下改进方向:
- 添加专门的
AsFtSearchVector()方法处理向量搜索结果 - 在现有
AsFtSearch()方法中添加对__vec_score字段的自动解析 - 提供更完善的文档说明向量搜索的特殊处理方式
最佳实践建议
- 在使用向量搜索时,始终检查
__vec_score字段而非依赖Score字段 - 对分数进行验证,确保其数值范围符合预期
- 考虑封装一个专门的向量搜索解析函数,统一处理分数解析逻辑
- 关注Rueidis库的更新,及时采用官方提供的解决方案
总结
Redis的向量搜索功能与传统的全文搜索在结果解析上存在差异,这在使用Rueidis等客户端库时需要特别注意。目前阶段,开发者需要手动处理向量相似度分数的解析,但这一情况未来可能会随着库的更新而改善。理解这一机制有助于开发者更好地利用Redis的向量搜索能力构建语义缓存等高级功能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
148
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19