LLaMA-Factory项目在华为NPU上进行增量预训练的注意事项
2025-05-01 06:34:24作者:裘旻烁
在LLaMA-Factory项目中使用华为Ascend NPU进行增量预训练时,开发者可能会遇到训练过程异常快速完成且未生成loss曲线的问题。本文将深入分析这一现象的原因,并提供解决方案。
问题现象分析
当使用内置数据集c4_demo在华为Ascend910B3 NPU上进行增量预训练时,训练过程仅持续1分钟便结束,且未生成预期的loss曲线。这种情况通常表明训练配置存在不合理之处。
根本原因
通过分析日志和配置参数,发现主要问题在于训练epoch数设置不足。默认配置下,训练可能仅进行了少量迭代就完成了所有epoch,导致训练时间过短,无法收集足够的训练数据来生成loss曲线。
解决方案
要解决这个问题,需要调整以下训练参数:
- 增加epoch数量:将训练epoch数设置为合理值(如3-5个epoch),确保有足够的训练时间
- 监控训练过程:在训练过程中实时观察loss变化情况
- 验证数据划分:确保训练集和验证集划分合理
华为NPU训练优化建议
在华为Ascend NPU上进行大模型训练时,还需要注意以下优化点:
- 混合精度训练:充分利用NPU的混合精度计算能力
- 梯度累积:适当设置梯度累积步数以提高训练稳定性
- 学习率调度:根据NPU特性调整学习率调度策略
- 内存优化:合理设置batch size以避免内存溢出
总结
在LLaMA-Factory项目中使用华为NPU进行训练时,合理的参数配置是关键。通过增加训练epoch数,可以确保模型获得足够的训练时间,同时也能生成完整的训练曲线用于性能评估。开发者应根据具体任务需求和数据规模,灵活调整训练参数,以获得最佳的训练效果。
对于NPU平台上的深度学习训练,还需要特别注意硬件特性带来的优化机会和限制,通过合理的配置可以充分发挥NPU的计算优势。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178