在yyjson中处理原始类型数组的方法
2025-06-25 02:58:15作者:平淮齐Percy
yyjson是一个高性能的JSON解析库,它提供了便捷的方式来处理JSON数据中的各种类型。本文将重点介绍如何使用yyjson处理JSON中的原始类型数组,特别是字符串数组。
获取数组大小
在处理数组之前,我们通常需要知道数组的大小以便进行内存分配。yyjson提供了yyjson_arr_size()函数来获取数组元素的数量:
yyjson_val *metadata_array = yyjson_obj_get(source, "metadata");
size_t array_size = yyjson_arr_size(metadata_array);
遍历数组元素
yyjson提供了yyjson_arr_foreach宏来方便地遍历数组中的每个元素:
yyjson_val *val;
size_t idx, max;
yyjson_arr_foreach(metadata_array, idx, max, val) {
// 处理每个元素
}
处理字符串数组
对于字符串数组,我们通常需要将JSON中的字符串复制到自己的内存空间中。可以使用strdup函数来复制字符串:
char **string_array = (char **)calloc(array_size + 1, sizeof(char *));
yyjson_val *val;
size_t idx, max;
yyjson_arr_foreach(metadata_array, idx, max, val) {
const char *str = yyjson_get_str(val);
string_array[idx] = strdup(str); // 复制字符串
}
内存管理注意事项
- 使用
calloc而不是malloc可以确保内存初始化为零,避免野指针 - 记得在数组末尾添加NULL指针作为结束标志(这就是为什么分配array_size+1)
- 使用完毕后需要释放每个字符串和整个数组
完整示例
// 解析JSON
yyjson_doc *doc = yyjson_read(json_str, strlen(json_str), 0);
yyjson_val *root = yyjson_doc_get_root(doc);
// 获取metadata数组
yyjson_val *source = yyjson_obj_get(root, "_source");
yyjson_val *metadata_array = yyjson_obj_get(source, "metadata");
// 分配内存
size_t array_size = yyjson_arr_size(metadata_array);
char **string_array = (char **)calloc(array_size + 1, sizeof(char *));
// 遍历并复制字符串
yyjson_val *val;
size_t idx, max;
yyjson_arr_foreach(metadata_array, idx, max, val) {
const char *str = yyjson_get_str(val);
string_array[idx] = strdup(str);
}
// 使用string_array...
// 释放内存
for (size_t i = 0; i < array_size; i++) {
free(string_array[i]);
}
free(string_array);
yyjson_doc_free(doc);
通过这种方式,我们可以安全地将JSON中的字符串数组转换为C语言中的字符串指针数组,便于后续处理。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C087
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.5 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
87
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
315
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
433
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19