在yyjson中处理原始类型数组的方法
2025-06-25 05:45:49作者:平淮齐Percy
yyjson是一个高性能的JSON解析库,它提供了便捷的方式来处理JSON数据中的各种类型。本文将重点介绍如何使用yyjson处理JSON中的原始类型数组,特别是字符串数组。
获取数组大小
在处理数组之前,我们通常需要知道数组的大小以便进行内存分配。yyjson提供了yyjson_arr_size()
函数来获取数组元素的数量:
yyjson_val *metadata_array = yyjson_obj_get(source, "metadata");
size_t array_size = yyjson_arr_size(metadata_array);
遍历数组元素
yyjson提供了yyjson_arr_foreach
宏来方便地遍历数组中的每个元素:
yyjson_val *val;
size_t idx, max;
yyjson_arr_foreach(metadata_array, idx, max, val) {
// 处理每个元素
}
处理字符串数组
对于字符串数组,我们通常需要将JSON中的字符串复制到自己的内存空间中。可以使用strdup
函数来复制字符串:
char **string_array = (char **)calloc(array_size + 1, sizeof(char *));
yyjson_val *val;
size_t idx, max;
yyjson_arr_foreach(metadata_array, idx, max, val) {
const char *str = yyjson_get_str(val);
string_array[idx] = strdup(str); // 复制字符串
}
内存管理注意事项
- 使用
calloc
而不是malloc
可以确保内存初始化为零,避免野指针 - 记得在数组末尾添加NULL指针作为结束标志(这就是为什么分配array_size+1)
- 使用完毕后需要释放每个字符串和整个数组
完整示例
// 解析JSON
yyjson_doc *doc = yyjson_read(json_str, strlen(json_str), 0);
yyjson_val *root = yyjson_doc_get_root(doc);
// 获取metadata数组
yyjson_val *source = yyjson_obj_get(root, "_source");
yyjson_val *metadata_array = yyjson_obj_get(source, "metadata");
// 分配内存
size_t array_size = yyjson_arr_size(metadata_array);
char **string_array = (char **)calloc(array_size + 1, sizeof(char *));
// 遍历并复制字符串
yyjson_val *val;
size_t idx, max;
yyjson_arr_foreach(metadata_array, idx, max, val) {
const char *str = yyjson_get_str(val);
string_array[idx] = strdup(str);
}
// 使用string_array...
// 释放内存
for (size_t i = 0; i < array_size; i++) {
free(string_array[i]);
}
free(string_array);
yyjson_doc_free(doc);
通过这种方式,我们可以安全地将JSON中的字符串数组转换为C语言中的字符串指针数组,便于后续处理。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
211
2.21 K

暂无简介
Dart
520
115

Ascend Extension for PyTorch
Python
64
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
87

React Native鸿蒙化仓库
JavaScript
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
578

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194