TorchTitan项目中多GPU训练时的性能分析器问题解析
在分布式深度学习训练中,性能分析器(profiler)是优化模型性能的重要工具。然而,当使用大规模GPU集群(64个或更多)时,TorchTitan项目团队遇到了一个棘手的问题:性能分析器在记录训练过程时会导致系统不稳定,甚至引发集体通信(如all-reduce操作)超时。
问题现象
团队最初观察到的问题表现为集体通信超时,特别是在进行all-reduce操作时。这种超时现象看似与网络通信相关,但经过深入调查后发现,真正的根源在于性能分析器的跟踪记录(trace dumping)阶段。
深入分析
当使用64个或更多GPU进行训练时,性能分析器会为每个GPU生成独立的跟踪记录文件。这些文件包含详细的执行时间线信息,对于性能调优至关重要。然而,团队发现了两个关键问题:
-
存储性能瓶颈:跟踪记录写入挂载存储(mounted storage)时,耗时高达1000秒,而同样的操作在本地磁盘上仅需0.5秒。这种巨大的性能差异导致了严重的同步问题。
-
同步机制失效:团队尝试通过在跟踪记录后插入分布式屏障(torch.distributed.barrier())来解决同步问题,但发现部分rank(计算节点)未能及时完成跟踪记录,导致屏障操作本身超时。
解决方案与优化
基于上述分析,团队实施了以下改进措施:
-
存储策略优化:将跟踪记录过程分为两个阶段:
- 训练期间:将跟踪记录写入本地高速磁盘
- 训练完成后:将记录文件复制到挂载存储
-
同步机制增强:改进同步检测机制,使得当发生超时时,系统能够明确报告哪些rank未能及时完成同步,而不是简单地报告集体通信超时。
经验总结
这一问题的解决过程为大规模分布式训练提供了宝贵经验:
-
存储选择至关重要:在高性能计算环境中,应优先考虑本地高速存储而非网络挂载存储,特别是对于频繁的I/O操作。
-
同步检测需要完善:现有的同步超时报错信息不够明确,需要增强诊断能力,能够精确识别未完成同步的节点。
-
性能分析开销评估:在使用性能分析工具时,需要充分评估其对系统整体性能的影响,特别是在大规模分布式环境中。
这一案例展示了在超大规模GPU集群上进行深度学习训练时可能遇到的独特挑战,以及系统级优化的重要性。通过解决这些问题,TorchTitan项目为类似规模的分布式训练提供了有价值的参考方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00