TorchTitan项目中多GPU训练时的性能分析器问题解析
在分布式深度学习训练中,性能分析器(profiler)是优化模型性能的重要工具。然而,当使用大规模GPU集群(64个或更多)时,TorchTitan项目团队遇到了一个棘手的问题:性能分析器在记录训练过程时会导致系统不稳定,甚至引发集体通信(如all-reduce操作)超时。
问题现象
团队最初观察到的问题表现为集体通信超时,特别是在进行all-reduce操作时。这种超时现象看似与网络通信相关,但经过深入调查后发现,真正的根源在于性能分析器的跟踪记录(trace dumping)阶段。
深入分析
当使用64个或更多GPU进行训练时,性能分析器会为每个GPU生成独立的跟踪记录文件。这些文件包含详细的执行时间线信息,对于性能调优至关重要。然而,团队发现了两个关键问题:
-
存储性能瓶颈:跟踪记录写入挂载存储(mounted storage)时,耗时高达1000秒,而同样的操作在本地磁盘上仅需0.5秒。这种巨大的性能差异导致了严重的同步问题。
-
同步机制失效:团队尝试通过在跟踪记录后插入分布式屏障(torch.distributed.barrier())来解决同步问题,但发现部分rank(计算节点)未能及时完成跟踪记录,导致屏障操作本身超时。
解决方案与优化
基于上述分析,团队实施了以下改进措施:
-
存储策略优化:将跟踪记录过程分为两个阶段:
- 训练期间:将跟踪记录写入本地高速磁盘
- 训练完成后:将记录文件复制到挂载存储
-
同步机制增强:改进同步检测机制,使得当发生超时时,系统能够明确报告哪些rank未能及时完成同步,而不是简单地报告集体通信超时。
经验总结
这一问题的解决过程为大规模分布式训练提供了宝贵经验:
-
存储选择至关重要:在高性能计算环境中,应优先考虑本地高速存储而非网络挂载存储,特别是对于频繁的I/O操作。
-
同步检测需要完善:现有的同步超时报错信息不够明确,需要增强诊断能力,能够精确识别未完成同步的节点。
-
性能分析开销评估:在使用性能分析工具时,需要充分评估其对系统整体性能的影响,特别是在大规模分布式环境中。
这一案例展示了在超大规模GPU集群上进行深度学习训练时可能遇到的独特挑战,以及系统级优化的重要性。通过解决这些问题,TorchTitan项目为类似规模的分布式训练提供了有价值的参考方案。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00