Prometheus Operator中PrometheusAgent CRD的scrapeConfigSelector配置实践
问题背景
在使用Prometheus Operator监控Kubernetes集群时,用户经常需要监控集群外部的目标。Prometheus Operator提供了多种方式来实现这一需求,其中通过ScrapeConfig CRD和scrapeConfigSelector字段是一种较为灵活的方法。
关键发现
在Prometheus Operator v0.75.2版本中,PrometheusAgent CRD确实支持scrapeConfigSelector字段,但用户在实际配置过程中遇到了几个常见误区:
- 
错误地将scrapeConfigSelector添加到CRD定义中:用户最初尝试在CustomResourceDefinition资源中直接添加scrapeConfigSelector字段,这会导致Kubernetes API服务器报错,因为该字段应该出现在PrometheusAgent资源定义中,而不是CRD定义中。
 - 
CRD版本不匹配问题:当用户尝试更新CRD时,遇到了metadata.annotations过大的错误,这是因为Kubernetes对annotation的大小有限制。解决方案是删除不必要的annotation或分批更新。
 - 
配置位置理解错误:正确的做法是在PrometheusAgent资源spec中配置scrapeConfigSelector,而不是在CRD定义中。
 
正确配置方法
要正确配置PrometheusAgent使用ScrapeConfig,需要以下步骤:
- 
确保使用匹配版本的CRD:从Prometheus Operator的release分支获取与operator版本匹配的CRD定义。
 - 
定义PrometheusAgent资源:在PrometheusAgent资源的spec部分添加scrapeConfigSelector字段,示例如下:
 
apiVersion: monitoring.coreos.com/v1
kind: PrometheusAgent
metadata:
  name: prometheus-agent
  namespace: monitoring
spec:
  scrapeConfigSelector:
    matchLabels:
      prometheus: system-monitoring-prometheus
- 创建ScrapeConfig资源:定义包含外部监控目标的ScrapeConfig资源,并确保其标签与上述selector匹配:
 
apiVersion: monitoring.coreos.com/v1alpha1
kind: ScrapeConfig
metadata:
  name: external-targets
  namespace: monitoring
  labels:
    prometheus: system-monitoring-prometheus
spec:
  jobName: 'external-services'
  staticConfigs:
    - targets:
      - external-service:9090
替代方案
如果仍然遇到问题,可以考虑使用additionalScrapeConfigs作为替代方案。这种方法通过Secret或ConfigMap提供额外的scrape配置:
apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
  name: prometheus
spec:
  additionalScrapeConfigs:
    name: additional-scrape-configs
    key: prometheus-additional.yaml
最佳实践建议
- 始终使用与Operator版本匹配的CRD定义
 - 在修改CRD前备份现有配置
 - 对于生产环境,建议先在小规模测试环境中验证配置
 - 监控Operator日志以获取配置应用过程中的错误信息
 - 使用标签系统清晰地组织ScrapeConfig资源
 
通过正确理解PrometheusAgent CRD和scrapeConfigSelector的工作原理,用户可以更灵活地监控Kubernetes集群内外的各种目标,构建完整的监控体系。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00