Prometheus Operator中PrometheusAgent CRD的scrapeConfigSelector配置实践
问题背景
在使用Prometheus Operator监控Kubernetes集群时,用户经常需要监控集群外部的目标。Prometheus Operator提供了多种方式来实现这一需求,其中通过ScrapeConfig CRD和scrapeConfigSelector字段是一种较为灵活的方法。
关键发现
在Prometheus Operator v0.75.2版本中,PrometheusAgent CRD确实支持scrapeConfigSelector字段,但用户在实际配置过程中遇到了几个常见误区:
-
错误地将scrapeConfigSelector添加到CRD定义中:用户最初尝试在CustomResourceDefinition资源中直接添加scrapeConfigSelector字段,这会导致Kubernetes API服务器报错,因为该字段应该出现在PrometheusAgent资源定义中,而不是CRD定义中。
-
CRD版本不匹配问题:当用户尝试更新CRD时,遇到了metadata.annotations过大的错误,这是因为Kubernetes对annotation的大小有限制。解决方案是删除不必要的annotation或分批更新。
-
配置位置理解错误:正确的做法是在PrometheusAgent资源spec中配置scrapeConfigSelector,而不是在CRD定义中。
正确配置方法
要正确配置PrometheusAgent使用ScrapeConfig,需要以下步骤:
-
确保使用匹配版本的CRD:从Prometheus Operator的release分支获取与operator版本匹配的CRD定义。
-
定义PrometheusAgent资源:在PrometheusAgent资源的spec部分添加scrapeConfigSelector字段,示例如下:
apiVersion: monitoring.coreos.com/v1
kind: PrometheusAgent
metadata:
name: prometheus-agent
namespace: monitoring
spec:
scrapeConfigSelector:
matchLabels:
prometheus: system-monitoring-prometheus
- 创建ScrapeConfig资源:定义包含外部监控目标的ScrapeConfig资源,并确保其标签与上述selector匹配:
apiVersion: monitoring.coreos.com/v1alpha1
kind: ScrapeConfig
metadata:
name: external-targets
namespace: monitoring
labels:
prometheus: system-monitoring-prometheus
spec:
jobName: 'external-services'
staticConfigs:
- targets:
- external-service:9090
替代方案
如果仍然遇到问题,可以考虑使用additionalScrapeConfigs作为替代方案。这种方法通过Secret或ConfigMap提供额外的scrape配置:
apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
name: prometheus
spec:
additionalScrapeConfigs:
name: additional-scrape-configs
key: prometheus-additional.yaml
最佳实践建议
- 始终使用与Operator版本匹配的CRD定义
- 在修改CRD前备份现有配置
- 对于生产环境,建议先在小规模测试环境中验证配置
- 监控Operator日志以获取配置应用过程中的错误信息
- 使用标签系统清晰地组织ScrapeConfig资源
通过正确理解PrometheusAgent CRD和scrapeConfigSelector的工作原理,用户可以更灵活地监控Kubernetes集群内外的各种目标,构建完整的监控体系。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









