Seq2Seq-with-Attention 开源项目安装与使用教程
2024-09-23 21:23:57作者:俞予舒Fleming
本教程将引导您如何搭建并使用 Harvard NLP 团队的 seq2seq-attn 开源项目。该项目基于 LSTM 构建了一个标准的序列到序列(seq2seq)模型,并集成了注意力机制,适用于诸如机器翻译等任务。
1. 项目目录结构及介绍
下面是 seq2seq-attn 项目的基本目录结构和重要文件简介:
.
├── data # 示例数据存放目录
├── README.md # 项目说明文件
├── LICENSE # 许可证文件
├── preprocess.py # 数据预处理脚本
├── train.lua # 模型训练脚本
├── evaluate.lua # 模型评估脚本
├── preprocess.shards.py # 分片预处理脚本(如果数据大,会被使用)
├── preprocess.py # 主数据预处理脚本
├── convert_to_cpu.lua # 将模型转移到CPU的脚本
├── evaluate.lua # 进行预测的脚本
├── prune.lua # 模型修剪脚本
└── train.lua # 训练主程序
- data: 包含示例数据。
- README.md: 项目概述和主要特性的介绍。
- LICENSE: 使用的MIT许可证说明。
- preprocess.py: 数据预处理工具,用于准备训练数据。
- train.lua: 训练模型的主要脚本。
- evaluate.lua: 评估模型性能的脚本。
- preprocess.shards.py, convert_to_cpu.lua, prune.lua: 辅助脚本,分别用于数据分片处理、模型转移到CPU以及模型剪枝。
2. 项目的启动文件介绍
训练模型
- train.lua
- 用途: 启动模型训练。通过此脚本,你可以指定数据文件路径、模型参数、是否使用GPU等。
- 示例命令:
th train.lua -data_file data/demo-train.hdf5 -val_data_file data/demo-val.hdf5 -savefile demo-model
预处理数据
- preprocess.py
- 用途: 将原始文本数据转换成模型所需的HDF5格式,包括构建词汇表。
- 示例命令:
python preprocess.py --srcfile data/src-train.txt --targetfile data/targ-train.txt --outputfile data/demo
评估与预测
- evaluate.lua
- 用途: 对训练好的模型进行评估或预测新数据。
- 示例命令:
th evaluate.lua -model demo-model_final.t7 -src_file data/src-val.txt -output_file pred.txt
3. 项目的配置文件介绍
虽然 seq2seq-attn 直接在脚本内部定义了参数配置,没有独立的配置文件,但是你可以在运行 train.lua, evaluate.lua, 和 preprocess.py 时,通过命令行参数来配置关键设置。例如:
- 在
train.lua中,可以通过-num_layers,-rnn_size, 和-attn等参数来调整模型的层数、隐藏层大小以及是否启用注意力机制。 - 使用
preprocess.py时,可以设定-srcvocabsize,-batchsize,-seqlength来控制预处理数据的细节。 - 在执行预测或评估时,通过
-src_dict和-targ_dict指定词典路径,确保正确的词汇映射。
请根据实际需求修改上述命令中的参数以适应你的特定应用情境。记住,在使用项目之前,确保已经满足所有依赖项,包括Python相关库以及Lua环境,特别是Torch及其相关包(如cutorch、nngraph)。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
648
149
Ascend Extension for PyTorch
Python
210
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
655
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.16 K
638
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216