Larastan 中 whereRaw 方法返回类型问题的分析与解决
问题背景
在使用 Larastan 进行 Laravel 项目的静态分析时,开发者可能会遇到一个关于 whereRaw 方法返回类型的类型检查问题。这个问题通常出现在使用 when 条件结合 whereRaw 方法构建查询时。
问题现象
当开发者编写类似以下的查询代码时:
$subject = JobAdvertisement::query()
->where(fn (Builder $q) => $q
->when($request->str('radius'), function (Builder $q, Stringable $radius) use ($request) {
['longitude' => $lng, 'latitude' => $lat] = $request->only('longitude', 'latitude');
$q->whereRaw("ST_Distance_Sphere(ST_GeomFromText('POINT($lng $lat)'), location_point) <= ?", [$radius->toString()]);
})
);
Larastan 会报出类型错误,提示匿名函数应该返回 Builder<Model> 类型,但实际返回的是 Builder<JobAdvertisement> 类型。
问题原因
这个问题的根源在于 Laravel 的 Builder 类的泛型类型参数不是协变的。在静态分析过程中,当明确指定 Builder 类型时,会覆盖/重置泛型类型信息,导致类型推断出现问题。
解决方案
方案一:移除类型声明
最简单的解决方案是移除闭包中的 Builder 类型声明,让 Larastan 能够自动推断正确的类型:
$subject = JobAdvertisement::query()
->where(fn ($q) => $q
->when($request->str('radius'), function ($q, Stringable $radius) use ($request) {
// 查询逻辑保持不变
})
);
方案二:使用类型注解
如果希望保留类型提示,可以使用 PHPDoc 注解来明确指定类型:
$subject = JobAdvertisement::query()
->where(fn (/** @var Builder<JobAdvertisement> $q */ $q) => $q
->when($request->str('radius'), function (/** @var Builder<JobAdvertisement> $q */ $q, Stringable $radius) use ($request) {
// 查询逻辑保持不变
})
);
深入理解
这个问题实际上反映了静态类型分析在动态语言环境中的挑战。Laravel 的查询构建器使用了流畅接口设计模式,这使得类型推断变得复杂。当方法链中的每个调用都可能改变返回类型时,静态分析工具需要更多的上下文信息来正确推断类型。
在最新版本的 PHPStan 中,这个问题已经得到了修复。因此,升级 PHPStan 到 1.11.2 或更高版本也可以解决这个问题。
最佳实践建议
-
优先使用自动类型推断:在大多数情况下,让 Larastan 自动推断类型是最佳选择,可以减少类型声明带来的复杂性。
-
必要时使用精确的类型注解:当自动推断不准确时,使用精确的 PHPDoc 注解来帮助静态分析工具理解代码意图。
-
保持工具更新:定期更新 PHPStan 和 Larastan 版本,以获得更好的类型推断能力和错误修复。
-
理解泛型概念:深入理解泛型在静态分析中的作用,特别是协变和逆变的概念,有助于编写更类型安全的代码。
通过理解这个问题及其解决方案,开发者可以更有效地使用 Larastan 进行 Laravel 项目的静态分析,同时编写出更健壮、类型安全的代码。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00