Larastan 中 whereRaw 方法返回类型问题的分析与解决
问题背景
在使用 Larastan 进行 Laravel 项目的静态分析时,开发者可能会遇到一个关于 whereRaw 方法返回类型的类型检查问题。这个问题通常出现在使用 when 条件结合 whereRaw 方法构建查询时。
问题现象
当开发者编写类似以下的查询代码时:
$subject = JobAdvertisement::query()
->where(fn (Builder $q) => $q
->when($request->str('radius'), function (Builder $q, Stringable $radius) use ($request) {
['longitude' => $lng, 'latitude' => $lat] = $request->only('longitude', 'latitude');
$q->whereRaw("ST_Distance_Sphere(ST_GeomFromText('POINT($lng $lat)'), location_point) <= ?", [$radius->toString()]);
})
);
Larastan 会报出类型错误,提示匿名函数应该返回 Builder<Model> 类型,但实际返回的是 Builder<JobAdvertisement> 类型。
问题原因
这个问题的根源在于 Laravel 的 Builder 类的泛型类型参数不是协变的。在静态分析过程中,当明确指定 Builder 类型时,会覆盖/重置泛型类型信息,导致类型推断出现问题。
解决方案
方案一:移除类型声明
最简单的解决方案是移除闭包中的 Builder 类型声明,让 Larastan 能够自动推断正确的类型:
$subject = JobAdvertisement::query()
->where(fn ($q) => $q
->when($request->str('radius'), function ($q, Stringable $radius) use ($request) {
// 查询逻辑保持不变
})
);
方案二:使用类型注解
如果希望保留类型提示,可以使用 PHPDoc 注解来明确指定类型:
$subject = JobAdvertisement::query()
->where(fn (/** @var Builder<JobAdvertisement> $q */ $q) => $q
->when($request->str('radius'), function (/** @var Builder<JobAdvertisement> $q */ $q, Stringable $radius) use ($request) {
// 查询逻辑保持不变
})
);
深入理解
这个问题实际上反映了静态类型分析在动态语言环境中的挑战。Laravel 的查询构建器使用了流畅接口设计模式,这使得类型推断变得复杂。当方法链中的每个调用都可能改变返回类型时,静态分析工具需要更多的上下文信息来正确推断类型。
在最新版本的 PHPStan 中,这个问题已经得到了修复。因此,升级 PHPStan 到 1.11.2 或更高版本也可以解决这个问题。
最佳实践建议
-
优先使用自动类型推断:在大多数情况下,让 Larastan 自动推断类型是最佳选择,可以减少类型声明带来的复杂性。
-
必要时使用精确的类型注解:当自动推断不准确时,使用精确的 PHPDoc 注解来帮助静态分析工具理解代码意图。
-
保持工具更新:定期更新 PHPStan 和 Larastan 版本,以获得更好的类型推断能力和错误修复。
-
理解泛型概念:深入理解泛型在静态分析中的作用,特别是协变和逆变的概念,有助于编写更类型安全的代码。
通过理解这个问题及其解决方案,开发者可以更有效地使用 Larastan 进行 Laravel 项目的静态分析,同时编写出更健壮、类型安全的代码。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00