Larastan 中 whereRaw 方法返回类型问题的分析与解决
问题背景
在使用 Larastan 进行 Laravel 项目的静态分析时,开发者可能会遇到一个关于 whereRaw 方法返回类型的类型检查问题。这个问题通常出现在使用 when 条件结合 whereRaw 方法构建查询时。
问题现象
当开发者编写类似以下的查询代码时:
$subject = JobAdvertisement::query()
->where(fn (Builder $q) => $q
->when($request->str('radius'), function (Builder $q, Stringable $radius) use ($request) {
['longitude' => $lng, 'latitude' => $lat] = $request->only('longitude', 'latitude');
$q->whereRaw("ST_Distance_Sphere(ST_GeomFromText('POINT($lng $lat)'), location_point) <= ?", [$radius->toString()]);
})
);
Larastan 会报出类型错误,提示匿名函数应该返回 Builder<Model>
类型,但实际返回的是 Builder<JobAdvertisement>
类型。
问题原因
这个问题的根源在于 Laravel 的 Builder 类的泛型类型参数不是协变的。在静态分析过程中,当明确指定 Builder 类型时,会覆盖/重置泛型类型信息,导致类型推断出现问题。
解决方案
方案一:移除类型声明
最简单的解决方案是移除闭包中的 Builder 类型声明,让 Larastan 能够自动推断正确的类型:
$subject = JobAdvertisement::query()
->where(fn ($q) => $q
->when($request->str('radius'), function ($q, Stringable $radius) use ($request) {
// 查询逻辑保持不变
})
);
方案二:使用类型注解
如果希望保留类型提示,可以使用 PHPDoc 注解来明确指定类型:
$subject = JobAdvertisement::query()
->where(fn (/** @var Builder<JobAdvertisement> $q */ $q) => $q
->when($request->str('radius'), function (/** @var Builder<JobAdvertisement> $q */ $q, Stringable $radius) use ($request) {
// 查询逻辑保持不变
})
);
深入理解
这个问题实际上反映了静态类型分析在动态语言环境中的挑战。Laravel 的查询构建器使用了流畅接口设计模式,这使得类型推断变得复杂。当方法链中的每个调用都可能改变返回类型时,静态分析工具需要更多的上下文信息来正确推断类型。
在最新版本的 PHPStan 中,这个问题已经得到了修复。因此,升级 PHPStan 到 1.11.2 或更高版本也可以解决这个问题。
最佳实践建议
-
优先使用自动类型推断:在大多数情况下,让 Larastan 自动推断类型是最佳选择,可以减少类型声明带来的复杂性。
-
必要时使用精确的类型注解:当自动推断不准确时,使用精确的 PHPDoc 注解来帮助静态分析工具理解代码意图。
-
保持工具更新:定期更新 PHPStan 和 Larastan 版本,以获得更好的类型推断能力和错误修复。
-
理解泛型概念:深入理解泛型在静态分析中的作用,特别是协变和逆变的概念,有助于编写更类型安全的代码。
通过理解这个问题及其解决方案,开发者可以更有效地使用 Larastan 进行 Laravel 项目的静态分析,同时编写出更健壮、类型安全的代码。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









