Scientific Python Cookiecutter 项目使用指南
2024-09-25 11:25:22作者:姚月梅Lane
1. 项目介绍
Scientific Python Cookiecutter 是一个用于创建新 Python 项目的模板,基于 Scientific Python 开发指南。该项目旨在提供一个标准化和高效的工具集,帮助开发者快速启动新的科学计算项目。它包含了多种构建工具和配置选项,支持多种后端(如 hatch、flit、pdm 等),并且与 GitHub Actions 集成,确保项目生成和测试的自动化。
2. 项目快速启动
2.1 安装依赖
首先,确保你已经安装了 copier 和 copier-templates-extensions。你可以使用 pipx 来安装这些工具:
pipx install copier
pipx inject copier copier-templates-extensions
2.2 生成项目
使用 copier 生成新项目:
copier copy gh:scientific-python/cookie <pkg> --trust
其中 <pkg> 是你希望放置新项目的路径。如果你使用的是旧版本的 copier,请使用 --UNSAFE 代替 --trust。
2.3 项目结构
生成项目后,你将看到以下基本结构:
<pkg>/
├── devcontainer/
├── github/
├── docs/
├── helpers/
├── src/
├── tests/
├── .gitignore
├── .gitattributes
├── .pre-commit-config.yaml
├── .pre-commit-hooks.yaml
├── .readthedocs.yaml
├── .ruby-version
├── Gemfile
├── Gemfile.lock
├── LICENSE
├── README.md
├── _config.yml
├── action.yml
├── cookiecutter.json
├── copier.yml
├── noxfile.py
├── pyproject.toml
2.4 配置和启动
根据你的需求,修改 pyproject.toml 和 README.md 文件。然后,你可以使用 nox 来运行本地测试:
nox -l # 查看所有命令
nox -s "lint(setuptools)" # 运行特定检查
3. 应用案例和最佳实践
3.1 应用案例
Scientific Python Cookiecutter 特别适用于以下场景:
- 科学计算项目:需要快速启动一个符合科学计算标准的 Python 项目。
- 多后端支持:项目需要支持多种构建工具(如 hatch、flit、pdm 等)。
- 自动化测试:希望通过 GitHub Actions 自动化测试和部署流程。
3.2 最佳实践
- 选择合适的后端:根据项目需求选择合适的构建工具(如 hatch 适合纯 Python 项目,scikit-build 适合 C++ 项目)。
- 定期更新模板:使用
copier的--vcs-ref=HEAD选项获取最新版本,确保项目配置和工具集保持最新。 - 文档和测试:确保项目包含完整的文档和测试,使用
nox进行本地测试,并通过 GitHub Actions 进行持续集成。
4. 典型生态项目
Scientific Python Cookiecutter 与以下生态项目紧密结合:
- Scientific Python 开发指南:项目模板基于该指南,确保项目符合科学计算的最佳实践。
- GitHub Actions:自动化测试和部署流程,确保代码质量和持续集成。
- PyPI:通过 GitHub Actions 自动发布包到 PyPI,简化发布流程。
- ReadTheDocs:自动生成和部署项目文档,确保文档的及时更新和可访问性。
通过这些生态项目的支持,Scientific Python Cookiecutter 能够帮助开发者快速启动和维护高质量的科学计算项目。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1